# Trading System - Launch Modes Guide ## Overview The unified trading system now provides clean, modular launch modes optimized for scalping and multi-timeframe analysis. ## Available Modes ### 1. Test Mode ```bash python main_clean.py --mode test ``` - Tests enhanced data provider with multi-timeframe indicators - Validates feature matrix creation (26 technical indicators) - Checks data provider health and caching - **Use case**: System validation and debugging ### 2. CNN Training Mode ```bash python main_clean.py --mode cnn --symbol ETH/USDT ``` - Trains CNN models only - Prepares multi-timeframe, multi-symbol feature matrices - Supports timeframes: 1s, 1m, 5m, 1h, 4h - **Use case**: Isolated CNN model development ### 3. RL Training Mode ```bash python main_clean.py --mode rl --symbol ETH/USDT ``` - Trains RL agents only - Focuses on 1s scalping data - Optimized for short-term decision making - **Use case**: Isolated RL agent development ### 4. Combined Training Mode ```bash python main_clean.py --mode train --symbol ETH/USDT ``` - Trains both CNN and RL models sequentially - First runs CNN training, then RL training - **Use case**: Full model pipeline training ### 5. Live Trading Mode ```bash python main_clean.py --mode trade --symbol ETH/USDT ``` - Runs live trading with 1s scalping focus - Real-time data streaming integration - **Use case**: Production trading execution ### 6. Web Dashboard Mode ```bash python main_clean.py --mode web --demo --port 8050 ``` - Enhanced scalping dashboard with 1s charts - Real-time technical indicators visualization - Scalping demo mode with realistic decisions - **Use case**: System monitoring and visualization ## Key Features ### Enhanced Data Provider - **26 Technical Indicators** including: - Trend: SMA, EMA, MACD, ADX, PSAR - Momentum: RSI, Stochastic, Williams %R - Volatility: Bollinger Bands, ATR, Keltner Channels - Volume: OBV, MFI, VWAP, Volume profiles - Custom composites for trend/momentum ### Scalping Optimization - **Primary timeframe: 1s** (falls back to 1m, 5m) - High-frequency decision making - Precise buy/sell marker positioning - Small price movement detection ### Memory Management - **8GB total memory limit** with per-model limits - Automatic cleanup and GPU/CPU fallback - Model registry with memory tracking ### Multi-Timeframe Architecture - **Unified feature matrix**: (n_timeframes, window_size, n_features) - Common feature set across all timeframes - Consistent shape validation ## Quick Start Examples ### Test the enhanced system: ```bash python main_clean.py --mode test # Expected output: Feature matrix (2, 20, 26) with 26 indicators ``` ### Start scalping dashboard: ```bash python main_clean.py --mode web --demo # Access: http://localhost:8050 # Shows 1s charts with scalping decisions ``` ### Prepare CNN training data: ```bash python main_clean.py --mode cnn # Prepares multi-symbol, multi-timeframe matrices ``` ### Setup RL training environment: ```bash python main_clean.py --mode rl # Focuses on 1s scalping data ``` ## Technical Improvements ### Fixed Issues ✅ **Feature matrix shape mismatch** - Now uses common features across timeframes ✅ **Buy/sell marker positioning** - Properly aligned with chart timestamps ✅ **Chart timeframe** - Optimized for 1s scalping with fallbacks ✅ **Unicode encoding errors** - Removed problematic emoji characters ✅ **Launch configuration** - Clean, modular mode selection ### New Capabilities 🚀 **Enhanced indicators** - 26 vs previous 17 features 🚀 **Scalping focus** - 1s timeframe with dense data points 🚀 **Separate training** - CNN and RL can be trained independently 🚀 **Memory efficiency** - 8GB limit with automatic management 🚀 **Real-time charts** - Enhanced dashboard with multiple indicators ## Integration Notes - **CNN modules**: Connect to `run_cnn_training()` function - **RL modules**: Connect to `run_rl_training()` function - **Live trading**: Integrate with `run_live_trading()` function - **Custom indicators**: Add to `_add_technical_indicators()` method ## Performance Specifications - **Data throughput**: 1s candles with 200+ data points - **Feature processing**: 26 indicators in < 1 second - **Memory usage**: Monitored and limited per model - **Chart updates**: 2-second refresh for real-time display - **Decision latency**: Optimized for scalping (< 100ms target)