# Placeholders and Missing Implementations Report **Generated**: 2025-11-23 **Purpose**: Identify all TODO, placeholder, and missing implementations that violate "no synthetic data" policy --- ## 🔴 **CRITICAL - Synthetic Data Violations** ### 1. **core/negative_case_trainer.py** (Lines 396-397) **Issue**: Uses `np.random.uniform()` for synthetic training improvements ```python session.loss_improvement = np.random.uniform(0.1, 0.5) # 10-50% improvement session.accuracy_improvement = np.random.uniform(0.05, 0.2) # 5-20% improvement ``` **Fix Required**: Calculate actual improvements from real training metrics --- ## 🟡 **HIGH PRIORITY - Missing Core Functionality** ### 2. **core/orchestrator.py** (Line 2020) **Issue**: `_get_all_predictions()` returns empty list - not implemented ```python async def _get_all_predictions(self, symbol: str) -> List[Prediction]: predictions = [] # TODO: Implement proper prediction gathering from all registered models logger.warning(f"_get_all_predictions not fully implemented for {symbol}") return predictions ``` **Impact**: Orchestrator cannot gather predictions from all models for decision fusion **Fix Required**: Implement actual prediction gathering from registered models ### 3. **ANNOTATE/core/real_training_adapter.py** (Line 2339-2341) **Issue**: Extrema training uses placeholder loss ```python # TODO: Implement actual extrema training session.current_loss = 0.5 / (epoch + 1) # Placeholder ``` **Fix Required**: Implement real extrema training logic ### 4. **ANNOTATE/core/real_training_adapter.py** (Line 1577) **Issue**: Placeholder `time_in_position_minutes` ```python time_in_position_minutes = 1.0 # Placeholder, will be more accurate with actual timestamps ``` **Fix Required**: Calculate actual time from entry timestamp --- ## 🟢 **MEDIUM PRIORITY - Missing Features** ### 5. **web/clean_dashboard.py** (Lines 8759, 8768) **Issue**: TODO for technical indicators and pivot points ```python def _get_technical_indicators(self, symbol: str) -> Dict[str, float]: # TODO: Implement technical indicators calculation return {} def _get_pivot_points(self, symbol: str) -> List['PivotPoint']: # TODO: Implement pivot points calculation return [] ``` **Note**: Pivot points ARE implemented elsewhere (Williams Market Structure), but not in this method **Fix Required**: Implement or delegate to existing pivot calculation ### 6. **web/clean_dashboard.py** (Line 8665) **Issue**: TODO for cross-model predictions ```python last_predictions={} # TODO: Add cross-model predictions ``` **Fix Required**: Gather predictions from all models (similar to orchestrator) ### 7. **web/clean_dashboard.py** (Line 8696) **Issue**: TODO for technical indicators in bar data ```python indicators={} # TODO: Add technical indicators ``` **Fix Required**: Calculate and include technical indicators ### 8. **web/clean_dashboard.py** (Line 9542) **Issue**: Placeholder features array ```python 'features': [current_price, 0, 0, 0, 0] # Placeholder features ``` **Fix Required**: Extract real features from market data --- ## 🔵 **LOW PRIORITY - Acceptable Placeholders** ### 9. **ANNOTATE/core/real_training_adapter.py** (Line 1421) **Issue**: Placeholder COB data (zeros) ```python # Create placeholder COB data (zeros if not available) cob_data = torch.zeros(1, target_seq_len, 100, dtype=torch.float32) ``` **Status**: ✅ **ACCEPTABLE** - Returns zeros when COB data unavailable (not synthetic, just missing) ### 10. **ANNOTATE/core/real_training_adapter.py** (Lines 2746-2748) **Issue**: Placeholder tech/market/COB data (zeros) ```python data['tech_data'] = torch.zeros(1, 40, dtype=torch.float32) data['market_data'] = torch.zeros(1, 30, dtype=torch.float32) data['cob_data'] = torch.zeros(1, 600, 100, dtype=torch.float32) ``` **Status**: ✅ **ACCEPTABLE** - Model requires these inputs, zeros are safe defaults when unavailable ### 11. **ANNOTATE/core/real_training_adapter.py** (Line 2887) **Issue**: Placeholder action in annotation conversion ```python 'action': 'BUY', # Placeholder, not used for candle prediction training ``` **Status**: ✅ **ACCEPTABLE** - Comment indicates it's not used for this training path --- ## ⚠️ **QUESTIONABLE - Needs Review** ### 12. **core/orchestrator.py** (Lines 2098-2101) **Issue**: Uses `random.uniform()` for tie-breaking ```python import random for action in action_scores: # Add tiny random noise (±0.001) to break exact ties action_scores[action] += random.uniform(-0.001, 0.001) ``` **Status**: ⚠️ **QUESTIONABLE** - This is for tie-breaking, not synthetic data generation **Recommendation**: Consider deterministic tie-breaking (e.g., alphabetical order) instead --- ## 📋 **Other TODOs Found** ### 13. **ANNOTATE/web/app.py** (Lines 2745, 2850) **Issue**: Hardcoded symbols ```python for symbol in ['ETH/USDT', 'BTC/USDT']: # TODO: Get from active subscriptions symbol = 'ETH/USDT' # TODO: Get from active trading pair ``` **Fix Required**: Get from active subscriptions/trading pairs ### 14. **ANNOTATE/web/static/js/chart_manager.js** (Line 1193) **Issue**: TODO for visual markers ```python # TODO: Add visual markers using Plotly annotations ``` **Fix Required**: Add visual markers if needed ### 15. **ANNOTATE/web/templates/components/inference_panel.html** (Line 259) **Issue**: TODO for Plotly chart update ```python // TODO: Update Plotly chart with prediction marker ``` **Fix Required**: Implement prediction marker update ### 16. **ANNOTATE/core/data_loader.py** (Line 434) **Issue**: MEXC time range fetch not implemented ```python logger.warning("MEXC time range fetch not implemented yet") ``` **Fix Required**: Implement MEXC time range fetch or remove if not needed ### 17. **core/multi_horizon_prediction_manager.py** (Lines 690-713) **Issue**: Placeholder methods for CNN/RL feature preparation ```python def _prepare_cnn_features_for_horizon(...) -> np.ndarray: """Prepare CNN features for specific horizon (placeholder - not yet implemented)""" return np.array([]) # Return empty array instead of synthetic data def _prepare_rl_state_for_horizon(...) -> np.ndarray: """Prepare RL state for specific horizon (placeholder - not yet implemented)""" return np.array([]) # Return empty array instead of synthetic data ``` **Status**: ✅ **ACCEPTABLE** - Returns empty arrays (not synthetic data), methods not yet needed --- ## 📊 **Summary** ### By Priority: - **🔴 Critical (Synthetic Data)**: 1 issue - **🟡 High Priority (Missing Core)**: 3 issues - **🟢 Medium Priority (Missing Features)**: 4 issues - **🔵 Low Priority (Acceptable)**: 3 issues - **⚠️ Questionable**: 1 issue - **📋 Other TODOs**: 5 issues ### Total Issues Found: 17 --- ## 🎯 **Recommended Fix Order** 1. **Fix synthetic data violation** (negative_case_trainer.py) - **URGENT** 2. **Implement `_get_all_predictions()`** (orchestrator.py) - **HIGH** 3. **Implement extrema training** (real_training_adapter.py) - **HIGH** 4. **Fix time_in_position calculation** (real_training_adapter.py) - **MEDIUM** 5. **Implement technical indicators** (clean_dashboard.py) - **MEDIUM** 6. **Review tie-breaking logic** (orchestrator.py) - **LOW** --- ## ✅ **Already Fixed** - ✅ `_get_live_prediction()` - Now uses real model inference with caching - ✅ Ghost candles - Now includes `predicted_candle` in predictions - ✅ JSON serialization - Fixed tensor serialization errors