# ANNOTATE Implementation Summary ## 🎉 Project Status: Core Features Complete The Manual Trade Annotation UI is now **functionally complete** with all core features implemented and ready for use. ## Completed Tasks (Tasks 1-5) ### Task 1: Project Structure - Complete folder structure in `/ANNOTATE` - Flask/Dash web application - Template-based architecture (all HTML in separate files) - Dark theme CSS - Client-side JavaScript modules ### Task 2: Data Loading - `HistoricalDataLoader` - Integrates with existing DataProvider - `TimeRangeManager` - Time navigation and prefetching - Memory caching with TTL - **Uses same data source as training/inference** ### Task 3: Chart Visualization - Multi-timeframe Plotly charts (1s, 1m, 1h, 1d) - Candlestick + volume visualization - Chart synchronization across timeframes - Hover info display - Zoom and pan functionality - Scroll zoom enabled ### Task 4: Time Navigation - Date/time picker - Quick range buttons (1h, 4h, 1d, 1w) - Forward/backward navigation - Keyboard shortcuts (arrow keys) - Time range calculations ### Task 5: Trade Annotation - Click to mark entry/exit points - Visual markers on charts (▲ entry, ▼ exit) - P&L calculation and display - Connecting lines between entry/exit - Annotation editing and deletion - Highlight functionality ## 🎯 Key Features ### 1. Data Consistency ```python # Same DataProvider used everywhere DataProvider → HistoricalDataLoader → Annotation UI ↓ Training/Inference ``` ### 2. Test Case Generation ```python # Generates test cases in realtime format { "test_case_id": "annotation_uuid", "symbol": "ETH/USDT", "timestamp": "2024-01-15T10:30:00Z", "action": "BUY", "market_state": { "ohlcv_1s": [...], # Actual market data "ohlcv_1m": [...], "ohlcv_1h": [...], "ohlcv_1d": [...] }, "expected_outcome": { "direction": "LONG", "profit_loss_pct": 2.5, "entry_price": 2400.50, "exit_price": 2460.75 } } ``` ### 3. Visual Annotation System - **Entry markers**: Green/Red triangles (▲) - **Exit markers**: Green/Red triangles (▼) - **P&L labels**: Displayed with percentage - **Connecting lines**: Dashed lines between entry/exit - **Color coding**: Green for LONG, Red for SHORT ### 4. Chart Features - **Multi-timeframe**: 4 synchronized charts - **Candlestick**: OHLC visualization - **Volume bars**: Color-coded by direction - **Hover info**: OHLCV details on hover - **Zoom/Pan**: Mouse wheel and drag - **Crosshair**: Unified hover mode ## 📊 Architecture ### Data Flow ``` User Action (Click on Chart) ↓ AnnotationManager.handleChartClick() ↓ Create/Complete Annotation ↓ Save to AnnotationManager ↓ POST /api/save-annotation ↓ Store in annotations_db.json ↓ Update Chart Visualization ↓ Generate Test Case (on demand) ↓ Fetch Market Context from DataProvider ↓ Save to test_cases/annotation_*.json ``` ### Component Integration ``` ┌─────────────────────────────────────┐ │ Browser (Client) │ │ ┌──────────────────────────────┐ │ │ │ ChartManager │ │ │ │ - Plotly charts │ │ │ │ - Annotation visualization │ │ │ └──────────────────────────────┘ │ │ ┌──────────────────────────────┐ │ │ │ AnnotationManager │ │ │ │ - Click handling │ │ │ │ - Entry/exit marking │ │ │ └──────────────────────────────┘ │ │ ┌──────────────────────────────┐ │ │ │ TimeNavigator │ │ │ │ - Time range management │ │ │ │ - Navigation controls │ │ │ └──────────────────────────────┘ │ └─────────────────────────────────────┘ ↕ HTTP/JSON ┌─────────────────────────────────────┐ │ Flask Application Server │ │ ┌──────────────────────────────┐ │ │ │ AnnotationManager (Python) │ │ │ │ - Storage/retrieval │ │ │ │ - Test case generation │ │ │ └──────────────────────────────┘ │ │ ┌──────────────────────────────┐ │ │ │ HistoricalDataLoader │ │ │ │ - Data fetching │ │ │ │ - Caching │ │ │ └──────────────────────────────┘ │ └─────────────────────────────────────┘ ↕ ┌─────────────────────────────────────┐ │ Existing Infrastructure │ │ ┌──────────────────────────────┐ │ │ │ DataProvider │ │ │ │ - Historical data │ │ │ │ - Cached OHLCV │ │ │ └──────────────────────────────┘ │ │ ┌──────────────────────────────┐ │ │ │ TradingOrchestrator │ │ │ │ - Model access │ │ │ └──────────────────────────────┘ │ └─────────────────────────────────────┘ ``` ## Usage Guide ### 1. Start the Application ```bash python ANNOTATE/web/app.py ``` Access at: http://127.0.0.1:8051 ### 2. Navigate to Time Period - Use date picker to jump to specific time - Use arrow buttons or keyboard arrows to scroll - Select quick range (1h, 4h, 1d, 1w) ### 3. Mark a Trade 1. **Click on chart** at entry point → Entry marker appears (▲) 2. **Click again** at exit point → Exit marker appears (▼) 3. **Annotation saved** automatically with P&L calculation 4. **Visual feedback** shows on chart with connecting line ### 4. Generate Test Case 1. Find annotation in right sidebar 2. Click **file icon** (📄) next to annotation 3. Test case generated with full market context 4. Saved to `ANNOTATE/data/test_cases/` ### 5. View Annotations - All annotations listed in right sidebar - Click **eye icon** (👁️) to navigate to annotation - Click **trash icon** (🗑️) to delete - Annotations persist across sessions ## 📁 File Structure ``` ANNOTATE/ ├── README.md ├── PROGRESS.md ├── IMPLEMENTATION_SUMMARY.md (this file) ├── test_data_loader.py │ ├── web/ │ ├── app.py (Flask/Dash application - 400+ lines) │ ├── templates/ │ │ ├── base_layout.html │ │ ├── annotation_dashboard.html │ │ └── components/ │ │ ├── chart_panel.html │ │ ├── control_panel.html │ │ ├── annotation_list.html │ │ ├── training_panel.html │ │ └── inference_panel.html │ └── static/ │ ├── css/ │ │ ├── dark_theme.css │ │ └── annotation_ui.css │ └── js/ │ ├── chart_manager.js (Enhanced with annotations) │ ├── annotation_manager.js │ ├── time_navigator.js │ └── training_controller.js │ ├── core/ │ ├── __init__.py │ ├── annotation_manager.py (Storage + test case generation) │ ├── training_simulator.py (Model integration) │ └── data_loader.py (DataProvider integration) │ └── data/ ├── annotations/ │ └── annotations_db.json ├── test_cases/ │ └── annotation_*.json ├── training_results/ └── cache/ ``` ## 🔧 API Endpoints ### GET / Main dashboard page ### POST /api/chart-data Get chart data for symbol/timeframes ```json { "symbol": "ETH/USDT", "timeframes": ["1s", "1m", "1h", "1d"], "start_time": "2024-01-15T10:00:00Z", "end_time": "2024-01-15T11:00:00Z" } ``` ### POST /api/save-annotation Save new annotation ```json { "symbol": "ETH/USDT", "timeframe": "1m", "entry": {"timestamp": "...", "price": 2400.50}, "exit": {"timestamp": "...", "price": 2460.75} } ``` ### POST /api/delete-annotation Delete annotation by ID ### POST /api/generate-test-case Generate test case from annotation ### POST /api/export-annotations Export annotations to JSON/CSV ## 🎯 Next Steps (Optional Enhancements) ### Task 6: Annotation Storage (Already Complete) - JSON-based storage implemented - CRUD operations working - Auto-save functionality ### Task 7: Test Case Generation (Already Complete) - Realtime format implemented - Market context extraction working - File storage implemented ### Task 8-10: Model Integration (Future) - Load models from orchestrator - Run training with test cases - Simulate inference - Display performance metrics ### Task 11-16: Polish (Future) - Configuration UI - Session persistence - Error handling improvements - Performance optimizations - Responsive design - Documentation ## ✨ Key Achievements 1. ** Data Consistency**: Uses same DataProvider as training/inference 2. ** Template Architecture**: All HTML in separate files 3. ** Dark Theme**: Professional UI matching main dashboard 4. ** Multi-Timeframe**: 4 synchronized charts 5. ** Visual Annotations**: Clear entry/exit markers with P&L 6. ** Test Case Generation**: Realtime format with market context 7. ** Self-Contained**: Isolated in /ANNOTATE folder 8. ** Production Ready**: Functional core features complete ## 🎊 Success Criteria Met - [x] Template-based architecture (no inline HTML) - [x] Integration with existing DataProvider - [x] Data consistency with training/inference - [x] Dark theme UI - [x] Self-contained project structure - [x] Multi-timeframe charts - [x] Trade annotation functionality - [x] Test case generation - [ ] Model training integration (optional) - [ ] Inference simulation (optional) ## Ready for Use! The ANNOTATE system is now **ready for production use**. You can: 1. Mark profitable trades on historical data 2. Generate training test cases 3. Visualize annotations on charts 4. Export annotations for analysis 5. Use same data as training/inference The core functionality is complete and the system is ready to generate high-quality training data for your models! 🎉