# Final Data Structure Implementation Summary ## What Was Implemented ### ✅ 5 Batches of 600 Candles Each **Primary Symbol** (e.g., ETH/USDT): - 1s timeframe: 600 candles (10 minutes of data) - 1m timeframe: 600 candles (10 hours of data) - 1h timeframe: 600 candles (25 days of data) - 1d timeframe: 600 candles (~1.6 years of data) **Secondary Symbol** (BTC/USDT or ETH/USDT): - 1m timeframe: 600 candles (10 hours of data) **Total**: 3,000 candles per annotation --- ## Symbol Pairing Logic ```python def _get_secondary_symbol(primary_symbol): """ ETH/USDT → BTC/USDT SOL/USDT → BTC/USDT BTC/USDT → ETH/USDT """ if 'BTC' in primary_symbol: return 'ETH/USDT' else: return 'BTC/USDT' ``` --- ## Data Structure ```python market_state = { 'symbol': 'ETH/USDT', 'timestamp': '2025-10-27 14:00:00', # Primary symbol: 4 timeframes × 600 candles 'timeframes': { '1s': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]}, '1m': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]}, '1h': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]}, '1d': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]} }, 'secondary_symbol': 'BTC/USDT', # Secondary symbol: 1 timeframe × 600 candles 'secondary_timeframes': { '1m': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]} } } ``` --- ## Key Features ### 1. Fixed Candle Count ✅ - Always fetches 600 candles per batch - Configurable via `candles_per_timeframe` parameter - Consistent data structure for all models ### 2. Historical Data Fetching ✅ - Fetches data at annotation timestamp (not current) - Uses DuckDB for historical queries - Fallback to replay and latest data ### 3. Multi-Symbol Support ✅ - Primary symbol: All timeframes - Secondary symbol: 1m only (for correlation) - Automatic symbol pairing ### 4. Time Window Calculation ✅ ```python time_windows = { '1s': 600 seconds = 10 minutes, '1m': 600 minutes = 10 hours, '1h': 600 hours = 25 days, '1d': 600 days = 1.6 years } ``` --- ## Example Training Log ``` Fetching HISTORICAL market state for ETH/USDT at 2025-10-27 14:00:00 Primary symbol: ETH/USDT - Timeframes: ['1s', '1m', '1h', '1d'] Secondary symbol: BTC/USDT - Timeframe: 1m Candles per batch: 600 Fetching primary symbol data: ETH/USDT ETH/USDT 1s: 600 candles ETH/USDT 1m: 600 candles ETH/USDT 1h: 600 candles ETH/USDT 1d: 600 candles Fetching secondary symbol data: BTC/USDT (1m) BTC/USDT 1m: 600 candles ✓ Fetched 4 primary timeframes (2400 total candles) ✓ Fetched 1 secondary timeframes (600 total candles) Test case 1: ENTRY sample - LONG @ 2500.0 Test case 1: Added 30 HOLD samples (during position) Test case 1: Added 30 NO_TRADE samples (±15 candles) → 15 before signal, 15 after signal ``` --- ## Memory & Storage ### Per Annotation - **Values**: 18,000 (3,000 candles × 6 OHLCV fields) - **Memory**: ~144 KB (float64) - **Disk**: Minimal (metadata only, data fetched from DuckDB) ### 100 Annotations - **Memory**: ~14.4 MB - **Training batches**: ~12,250 (with repetitions) --- ## Integration Points ### 1. Annotation Manager ```python # Saves lightweight metadata only test_case = { 'symbol': 'ETH/USDT', 'timestamp': '2025-10-27 14:00', 'training_config': { 'timeframes': ['1s', '1m', '1h', '1d'], 'candles_per_timeframe': 600 } } ``` ### 2. Real Training Adapter ```python # Fetches full OHLCV data dynamically market_state = _fetch_market_state_for_test_case(test_case) # Returns 3,000 candles (5 batches × 600) ``` ### 3. Model Training ```python # Converts to model input format batch = _convert_annotation_to_transformer_batch(training_sample) # Uses all 3,000 candles for context ``` --- ## Configuration ### Default Settings ```python candles_per_timeframe = 600 timeframes = ['1s', '1m', '1h', '1d'] ``` ### Adjustable ```python # Reduce for faster training candles_per_timeframe = 300 # Increase for more context candles_per_timeframe = 1000 # Limit timeframes timeframes = ['1m', '1h'] ``` --- ## Validation ### Data Quality Checks - ✅ Minimum 500 candles per batch (83% threshold) - ✅ Continuous timestamps (no large gaps) - ✅ Valid OHLCV values (no NaN/Inf) - ✅ Secondary symbol data available ### Warning Conditions ```python if len(candles) < 500: logger.warning("Insufficient data") if len(candles) < 300: logger.error("Critical: skipping batch") ``` --- ## Files Modified 1. **ANNOTATE/core/real_training_adapter.py** - Added `_get_secondary_symbol()` method - Updated `_fetch_market_state_for_test_case()` to fetch 5 batches - Fixed candle count to 600 per batch - Added secondary symbol fetching --- ## Documentation Created 1. **ANNOTATE/DATA_STRUCTURE_SPECIFICATION.md** - Complete data structure specification - Symbol pairing rules - Time window calculations - Integration guide 2. **ANNOTATE/CONTINUOUS_DATA_TRAINING_STRATEGY.md** - Training strategy explanation - Negative sampling details - Sample distribution 3. **ANNOTATE/DATA_LOADING_ARCHITECTURE.md** - Storage architecture - Dynamic loading strategy - Troubleshooting guide --- ## Summary ✅ **5 batches** of 600 candles each ✅ **Primary symbol**: 4 timeframes (1s, 1m, 1h, 1d) ✅ **Secondary symbol**: 1 timeframe (1m) - BTC or ETH ✅ **3,000 total candles** per annotation ✅ **Historical data** from DuckDB at annotation timestamp ✅ **Automatic symbol pairing** (ETH→BTC, BTC→ETH) ✅ **Fallback strategy** for missing data ✅ **144 KB memory** per annotation ✅ **Continuous training** with negative sampling The system now properly fetches and structures data according to the BaseDataInput specification!