""" Data Interface for Neural Network Trading System This module provides functionality to fetch, process, and prepare data for the neural network models. """ import os import logging import numpy as np import pandas as pd from datetime import datetime, timedelta import json import pickle from sklearn.preprocessing import MinMaxScaler logger = logging.getLogger(__name__) class DataInterface: """ Enhanced Data Interface supporting: - Multiple trading pairs (up to 3) - Multiple timeframes per pair (1s, 1m, 1h, 1d + custom) - Technical indicators (up to 20) - Cross-timeframe normalization - Real-time tick streaming """ def __init__(self, symbol=None, timeframes=None, data_dir="NN/data"): """ Initialize the data interface. Args: symbol (str): Trading pair symbol (e.g., "BTC/USDT") timeframes (list): List of timeframes to use (e.g., ['1m', '5m', '1h', '4h', '1d']) data_dir (str): Directory to store/load datasets """ self.symbol = symbol self.timeframes = timeframes or ['1h', '4h', '1d'] self.data_dir = data_dir self.scalers = {} # Store scalers for each timeframe # Create data directory if it doesn't exist os.makedirs(self.data_dir, exist_ok=True) # Initialize empty dataframes for each timeframe self.dataframes = {tf: None for tf in self.timeframes} logger.info(f"DataInterface initialized for {symbol} with timeframes {timeframes}") def get_historical_data(self, timeframe='1h', n_candles=1000, use_cache=True): """ Fetch historical price data for a given timeframe. Args: timeframe (str): Timeframe to fetch data for n_candles (int): Number of candles to fetch use_cache (bool): Whether to use cached data if available Returns: pd.DataFrame: DataFrame with OHLCV data """ cache_file = os.path.join(self.data_dir, f"{self.symbol.replace('/', '_')}_{timeframe}.csv") # For 1s timeframe, always fetch fresh data if timeframe == '1s': use_cache = False # Check if cached data exists and is recent if use_cache and os.path.exists(cache_file): try: df = pd.read_csv(cache_file, parse_dates=['timestamp']) # If we have enough data and it's recent, use it if len(df) >= n_candles: logger.info(f"Using cached data for {self.symbol} {timeframe} ({len(df)} candles)") self.dataframes[timeframe] = df return df.tail(n_candles) except Exception as e: logger.error(f"Error reading cached data: {str(e)}") # If we get here, we need to fetch data try: logger.info(f"Fetching historical data for {self.symbol} {timeframe}") # For 1s timeframe, we need more data points if timeframe == '1s': n_candles = min(n_candles * 60, 10000) # Up to 10k ticks # Placeholder for real data fetching self._fetch_data_from_exchange(timeframe, n_candles) # Save to cache (except for 1s timeframe) if self.dataframes[timeframe] is not None and timeframe != '1s': self.dataframes[timeframe].to_csv(cache_file, index=False) return self.dataframes[timeframe] else: # Create dummy data as fallback logger.warning(f"Could not fetch data for {self.symbol} {timeframe}, using dummy data") df = self._create_dummy_data(timeframe, n_candles) self.dataframes[timeframe] = df return df except Exception as e: logger.error(f"Error fetching data: {str(e)}") return None def _fetch_data_from_exchange(self, timeframe, n_candles): """ Placeholder method for fetching data from an exchange. In a real implementation, this would connect to an exchange API. """ # This is a placeholder - in a real implementation this would make API calls # to a cryptocurrency exchange to fetch OHLCV data # For now, just generate dummy data self.dataframes[timeframe] = self._create_dummy_data(timeframe, n_candles) def _create_dummy_data(self, timeframe, n_candles): """ Create dummy OHLCV data for testing purposes. Args: timeframe (str): Timeframe to create data for n_candles (int): Number of candles to create Returns: pd.DataFrame: DataFrame with dummy OHLCV data """ # Map timeframe to seconds tf_seconds = { '1s': 1, # Added 1s timeframe '1m': 60, '5m': 300, '15m': 900, '1h': 3600, '4h': 14400, '1d': 86400 } seconds = tf_seconds.get(timeframe, 3600) # Default to 1h # Create timestamps end_time = datetime.now() timestamps = [end_time - timedelta(seconds=seconds * i) for i in range(n_candles)] timestamps.reverse() # Oldest first # Generate random price data with realistic patterns np.random.seed(42) # For reproducibility # Start price price = 50000 # For BTC/USDT prices = [] volumes = [] for i in range(n_candles): # Random walk with drift and volatility based on timeframe drift = 0.0001 * seconds # Larger drift for larger timeframes volatility = 0.01 * np.sqrt(seconds / 3600) # Scale volatility by sqrt of time # Daily/weekly patterns if timeframe in ['1d', '4h']: # Add some cyclical patterns cycle = np.sin(i / 7 * np.pi) * 0.02 # Weekly cycle else: cycle = np.sin(i / 24 * np.pi) * 0.01 # Daily cycle # Calculate price change with random walk + cycles (clamped to prevent overflow) price_change = price * np.clip(drift + volatility * np.random.randn() + cycle, -0.1, 0.1) price = np.clip(price + price_change, 1000, 100000) # Keep price in reasonable range # Generate OHLC from the price open_price = price high_price = price * (1 + abs(0.005 * np.random.randn())) low_price = price * (1 - abs(0.005 * np.random.randn())) close_price = price * (1 + 0.002 * np.random.randn()) # Ensure high >= open, close, low and low <= open, close high_price = max(high_price, open_price, close_price) low_price = min(low_price, open_price, close_price) # Generate volume (higher for larger price movements) with safe calculation volume = 10000 + 5000 * np.random.rand() + abs(price_change)/price * 10000 prices.append((open_price, high_price, low_price, close_price)) volumes.append(volume) # Update price for next iteration price = close_price # Create DataFrame df = pd.DataFrame( [(t, o, h, l, c, v) for t, (o, h, l, c), v in zip(timestamps, prices, volumes)], columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'] ) return df def prepare_nn_input(self, timeframes=None, n_candles=500, window_size=20): """ Prepare input data for neural network models. Args: timeframes (list): List of timeframes to use n_candles (int): Number of candles to fetch for each timeframe window_size (int): Size of the sliding window for feature creation Returns: tuple: (X, y, timestamps) where: X is the input features array with shape (n_samples, window_size, n_features) y is the target array with shape (n_samples,) timestamps is an array of timestamps for each sample """ if timeframes is None: timeframes = self.timeframes # Get data for all requested timeframes dfs = {} min_length = float('inf') for tf in timeframes: # For 1s timeframe, we need more data points tf_candles = n_candles * 60 if tf == '1s' else n_candles df = self.get_historical_data(timeframe=tf, n_candles=tf_candles) if df is not None and not df.empty: dfs[tf] = df # Keep track of minimum length across all timeframes min_length = min(min_length, len(df)) if not dfs: logger.error("No data available for feature creation") return None, None, None # Align all dataframes to the same length for tf in dfs: dfs[tf] = dfs[tf].tail(min_length) # Create features for each timeframe features = [] targets = None timestamps = None for tf in timeframes: if tf in dfs: X, y, ts = self._create_features(dfs[tf], window_size) if X is not None and y is not None: features.append(X) if targets is None: # Only need targets from one timeframe targets = y timestamps = ts if not features or targets is None: logger.error("Failed to create features for any timeframe") return None, None, None # Ensure all feature arrays have the same length min_samples = min(f.shape[0] for f in features) features = [f[-min_samples:] for f in features] targets = targets[-min_samples:] timestamps = timestamps[-min_samples:] # Stack features from all timeframes X = np.concatenate([f.reshape(min_samples, window_size, -1) for f in features], axis=2) # Validate data if np.any(np.isnan(X)) or np.any(np.isinf(X)): logger.error("Generated features contain NaN or infinite values") return None, None, None logger.info(f"Prepared input data - X shape: {X.shape}, y shape: {targets.shape}") return X, targets, timestamps def _create_features(self, df, window_size): """ Create features from OHLCV data using a sliding window. Args: df (pd.DataFrame): DataFrame with OHLCV data window_size (int): Size of the sliding window Returns: tuple: (X, y, timestamps) where: X is the feature array y is the target array timestamps is the array of timestamps """ if len(df) < window_size + 1: logger.error(f"Not enough data for feature creation (need {window_size + 1}, got {len(df)})") return None, None, None # Extract OHLCV data data = df[['open', 'high', 'low', 'close', 'volume']].values timestamps = df['timestamp'].values # Create sliding windows X = np.array([data[i:i+window_size] for i in range(len(data)-window_size)]) # Create targets (next candle's movement: 0=down, 1=neutral, 2=up) next_close = data[window_size:, 3] # Close prices curr_close = data[window_size-1:-1, 3] price_changes = (next_close - curr_close) / curr_close # Define thresholds for price movement classification threshold = 0.001 # 0.1% threshold y = np.zeros(len(price_changes), dtype=int) y[price_changes > threshold] = 2 # Up y[(price_changes >= -threshold) & (price_changes <= threshold)] = 1 # Neutral logger.info(f"Created features - X shape: {X.shape}, y shape: {y.shape}") return X, y, timestamps[window_size:] def generate_training_dataset(self, timeframes=None, n_candles=1000, window_size=20): """ Generate and save a training dataset for neural network models. Args: timeframes (list): List of timeframes to use n_candles (int): Number of candles to fetch for each timeframe window_size (int): Size of the sliding window for feature creation Returns: dict: Dictionary of dataset file paths """ if timeframes is None: timeframes = self.timeframes # Prepare inputs X, y, timestamps = self.prepare_nn_input(timeframes, n_candles, window_size) if X is None or y is None: logger.error("Failed to prepare input data for dataset") return None # Prepare output paths timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S") dataset_name = f"{self.symbol.replace('/', '_')}_{'_'.join(timeframes)}_{timestamp_str}" X_path = os.path.join(self.data_dir, f"{dataset_name}_X.npy") y_path = os.path.join(self.data_dir, f"{dataset_name}_y.npy") timestamps_path = os.path.join(self.data_dir, f"{dataset_name}_timestamps.npy") metadata_path = os.path.join(self.data_dir, f"{dataset_name}_metadata.json") # Save arrays np.save(X_path, X) np.save(y_path, y) np.save(timestamps_path, timestamps) # Save metadata metadata = { 'symbol': self.symbol, 'timeframes': timeframes, 'window_size': window_size, 'n_samples': len(X), 'feature_shape': X.shape[1:], 'created_at': datetime.now().isoformat(), 'dataset_name': dataset_name } with open(metadata_path, 'w') as f: json.dump(metadata, f, indent=2) # Save scalers scaler_path = os.path.join(self.data_dir, f"{dataset_name}_scalers.pkl") with open(scaler_path, 'wb') as f: pickle.dump(self.scalers, f) # Return dataset info dataset_info = { 'X_path': X_path, 'y_path': y_path, 'timestamps_path': timestamps_path, 'metadata_path': metadata_path, 'scaler_path': scaler_path } logger.info(f"Dataset generated and saved: {dataset_name}") return dataset_info def get_feature_count(self): """ Calculate total number of features across all timeframes. Returns: int: Total number of features (5 features per timeframe) """ return len(self.timeframes) * 5 # OHLCV features for each timeframe def calculate_pnl(self, predictions, actual_prices, position_size=1.0): """ Calculate PnL and win rates based on predictions and actual price movements. Args: predictions: Array of predicted actions (0=SELL, 1=HOLD, 2=BUY) or probabilities actual_prices: Array of actual close prices position_size: Position size for each trade Returns: tuple: (pnl, win_rate, trades) where: pnl is the total profit and loss win_rate is the ratio of winning trades trades is a list of trade dictionaries """ if len(predictions) != len(actual_prices) - 1: logger.error("Predictions and prices length mismatch") return 0.0, 0.0, [] pnl = 0.0 trades = 0 wins = 0 trade_history = [] for i in range(len(predictions)): pred = predictions[i] current_price = actual_prices[i] next_price = actual_prices[i + 1] # Calculate price change percentage price_change = (next_price - current_price) / current_price # Calculate PnL based on prediction if pred == 2: # Buy trade_pnl = price_change * position_size trades += 1 if trade_pnl > 0: wins += 1 trade_history.append({ 'type': 'buy', 'price': current_price, 'pnl': trade_pnl, 'timestamp': self.dataframes[self.timeframes[0]]['timestamp'].iloc[i] }) elif pred == 0: # Sell trade_pnl = -price_change * position_size trades += 1 if trade_pnl > 0: wins += 1 trade_history.append({ 'type': 'sell', 'price': current_price, 'pnl': trade_pnl, 'timestamp': self.dataframes[self.timeframes[0]]['timestamp'].iloc[i] }) pnl += trade_pnl if pred in [0, 2] else 0 win_rate = wins / trades if trades > 0 else 0.0 return pnl, win_rate, trade_history def get_future_prices(self, prices, n_candles=3): """ Extract future prices for use in retrospective training. Args: prices: Array of close prices n_candles: Number of future candles to predict Returns: numpy.ndarray: Array of future prices for each sample """ if prices is None or len(prices) <= n_candles: logger.warning(f"Not enough price data for future prediction: {len(prices) if prices is not None else 0} prices") # Return zeros if not enough data return np.zeros((len(prices) if prices is not None else 0, 1)) # For each price point i, get the price at i+n_candles future_prices = np.zeros((len(prices), 1)) for i in range(len(prices) - n_candles): future_prices[i, 0] = prices[i + n_candles] # For the last n_candles positions, we don't have future data # We'll use the last known price as a placeholder for i in range(len(prices) - n_candles, len(prices)): future_prices[i, 0] = prices[-1] return future_prices def prepare_training_data(self, refresh=False, refresh_interval=300): """ Prepare data for training, including splitting into train/validation sets. Args: refresh (bool): Whether to refresh the data cache refresh_interval (int): Interval in seconds to refresh data Returns: tuple: (X_train, y_train, X_val, y_val, train_prices, val_prices) """ current_time = datetime.now() # Check if we should refresh the data if refresh or not hasattr(self, 'last_refresh_time') or \ (current_time - self.last_refresh_time).total_seconds() > refresh_interval: logger.info("Refreshing training data...") self.last_refresh_time = current_time else: # Use cached data if hasattr(self, 'cached_train_data'): return self.cached_train_data # Prepare input data X, y, _ = self.prepare_nn_input() if X is None: return None, None, None, None, None, None # Get price data for PnL calculation raw_prices = [] for tf in self.timeframes: if tf in self.dataframes and self.dataframes[tf] is not None: # Get the close prices for the same period as X prices = self.dataframes[tf]['close'].values[-len(X):] if len(prices) == len(X): raw_prices = prices break if len(raw_prices) != len(X): raw_prices = np.zeros(len(X)) # Fallback if no prices available # Split data into training and validation sets (80/20) split_idx = int(len(X) * 0.8) X_train, X_val = X[:split_idx], X[split_idx:] y_train, y_val = y[:split_idx], y[split_idx:] train_prices, val_prices = raw_prices[:split_idx], raw_prices[split_idx:] # Cache the data self.cached_train_data = (X_train, y_train, X_val, y_val, train_prices, val_prices) return X_train, y_train, X_val, y_val, train_prices, val_prices def prepare_realtime_input(self, timeframe='1h', n_candles=30, window_size=20): """ Prepare a single input sample from the most recent data for real-time inference. Args: timeframe (str): Timeframe to use n_candles (int): Number of recent candles to fetch window_size (int): Size of the sliding window Returns: tuple: (X, timestamp) where: X is the input features array with shape (1, window_size, n_features) timestamp is the timestamp of the most recent candle """ # Get recent data df = self.get_historical_data(timeframe=timeframe, n_candles=n_candles, use_cache=False) if df is None or len(df) < window_size: logger.error(f"Not enough data for inference (need at least {window_size} candles)") return None, None # Extract features from the most recent window ohlcv = df[['open', 'high', 'low', 'close', 'volume']].tail(window_size).values # Scale the data if timeframe in self.scalers: # Use existing scaler scaler = self.scalers[timeframe] else: # Create new scaler scaler = MinMaxScaler() # Fit on all available data all_data = df[['open', 'high', 'low', 'close', 'volume']].values scaler.fit(all_data) self.scalers[timeframe] = scaler ohlcv_scaled = scaler.transform(ohlcv) # Reshape to (1, window_size, n_features) X = np.array([ohlcv_scaled]) # Get timestamp of the most recent candle timestamp = df['timestamp'].iloc[-1] return X, timestamp