#!/usr/bin/env python3 """ Advanced Transformer Models for High-Frequency Trading Optimized for COB data, technical indicators, and market microstructure """ import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset import numpy as np import math import logging from typing import Dict, Any, Optional, Tuple, List from dataclasses import dataclass import os import json from datetime import datetime # Configure logging logger = logging.getLogger(__name__) @dataclass class TradingTransformerConfig: """Configuration for trading transformer models - SCALED TO 46M PARAMETERS""" # Model architecture - SCALED UP d_model: int = 1024 # Model dimension (2x increase) n_heads: int = 16 # Number of attention heads (2x increase) n_layers: int = 12 # Number of transformer layers (2x increase) d_ff: int = 4096 # Feed-forward dimension (2x increase) dropout: float = 0.1 # Dropout rate # Input dimensions - ENHANCED seq_len: int = 150 # Sequence length for time series (1.5x increase) cob_features: int = 100 # COB feature dimension (2x increase) tech_features: int = 40 # Technical indicator features (2x increase) market_features: int = 30 # Market microstructure features (2x increase) # Output configuration n_actions: int = 3 # BUY, SELL, HOLD confidence_output: bool = True # Output confidence scores # Training configuration - OPTIMIZED FOR LARGER MODEL learning_rate: float = 5e-5 # Reduced for larger model weight_decay: float = 1e-4 # Increased regularization warmup_steps: int = 8000 # More warmup steps max_grad_norm: float = 0.5 # Tighter gradient clipping # Advanced features - ENHANCED use_relative_position: bool = True use_multi_scale_attention: bool = True use_market_regime_detection: bool = True use_uncertainty_estimation: bool = True # NEW: Additional scaling features use_deep_attention: bool = True # Deeper attention mechanisms use_residual_connections: bool = True # Enhanced residual connections use_layer_norm_variants: bool = True # Advanced normalization class PositionalEncoding(nn.Module): """Sinusoidal positional encoding for transformer""" def __init__(self, d_model: int, max_len: int = 5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x: torch.Tensor) -> torch.Tensor: return x + self.pe[:x.size(0), :] class RelativePositionalEncoding(nn.Module): """Relative positional encoding for better temporal understanding""" def __init__(self, d_model: int, max_relative_position: int = 128): super().__init__() self.d_model = d_model self.max_relative_position = max_relative_position # Learnable relative position embeddings self.relative_position_embeddings = nn.Embedding( 2 * max_relative_position + 1, d_model ) def forward(self, seq_len: int) -> torch.Tensor: """Generate relative position encoding matrix""" range_vec = torch.arange(seq_len) range_mat = range_vec.unsqueeze(0).repeat(seq_len, 1) distance_mat = range_mat - range_mat.transpose(0, 1) # Clip to max relative position distance_mat_clipped = torch.clamp( distance_mat, -self.max_relative_position, self.max_relative_position ) # Shift to positive indices final_mat = distance_mat_clipped + self.max_relative_position return self.relative_position_embeddings(final_mat) class DeepMultiScaleAttention(nn.Module): """Enhanced multi-scale attention with deeper mechanisms for 46M parameter model""" def __init__(self, d_model: int, n_heads: int, scales: List[int] = [1, 3, 5, 7, 11, 15]): super().__init__() self.d_model = d_model self.n_heads = n_heads self.scales = scales self.head_dim = d_model // n_heads assert d_model % n_heads == 0, "d_model must be divisible by n_heads" # Enhanced multi-scale projections with deeper architecture self.scale_projections = nn.ModuleList([ nn.ModuleDict({ 'query': nn.Sequential( nn.Linear(d_model, d_model * 2), nn.GELU(), nn.Dropout(0.1), nn.Linear(d_model * 2, d_model) ), 'key': nn.Sequential( nn.Linear(d_model, d_model * 2), nn.GELU(), nn.Dropout(0.1), nn.Linear(d_model * 2, d_model) ), 'value': nn.Sequential( nn.Linear(d_model, d_model * 2), nn.GELU(), nn.Dropout(0.1), nn.Linear(d_model * 2, d_model) ), 'conv': nn.Sequential( nn.Conv1d(d_model, d_model * 2, kernel_size=scale, padding=scale//2, groups=d_model), nn.GELU(), nn.Conv1d(d_model * 2, d_model, kernel_size=1) ) }) for scale in scales ]) # Enhanced output projection with residual connection self.output_projection = nn.Sequential( nn.Linear(d_model * len(scales), d_model * 2), nn.GELU(), nn.Dropout(0.1), nn.Linear(d_model * 2, d_model) ) # Additional attention mechanisms self.cross_scale_attention = nn.MultiheadAttention( d_model, n_heads // 2, dropout=0.1, batch_first=True ) self.dropout = nn.Dropout(0.1) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: batch_size, seq_len, _ = x.size() scale_outputs = [] for scale_proj in self.scale_projections: # Apply enhanced temporal convolution for this scale x_conv = scale_proj['conv'](x.transpose(1, 2)).transpose(1, 2) # Enhanced attention computation with deeper projections Q = scale_proj['query'](x_conv).view(batch_size, seq_len, self.n_heads, self.head_dim) K = scale_proj['key'](x_conv).view(batch_size, seq_len, self.n_heads, self.head_dim) V = scale_proj['value'](x_conv).view(batch_size, seq_len, self.n_heads, self.head_dim) # Transpose for attention computation Q = Q.transpose(1, 2) # (batch, n_heads, seq_len, head_dim) K = K.transpose(1, 2) V = V.transpose(1, 2) # Scaled dot-product attention scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim) if mask is not None: scores.masked_fill_(mask == 0, -1e9) attention = F.softmax(scores, dim=-1) attention = self.dropout(attention) output = torch.matmul(attention, V) output = output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model) scale_outputs.append(output) # Combine multi-scale outputs with enhanced projection combined = torch.cat(scale_outputs, dim=-1) output = self.output_projection(combined) # Apply cross-scale attention for better integration cross_attended, _ = self.cross_scale_attention(output, output, output, attn_mask=mask) # Residual connection return output + cross_attended class MarketRegimeDetector(nn.Module): """Market regime detection module for adaptive behavior""" def __init__(self, d_model: int, n_regimes: int = 4): super().__init__() self.d_model = d_model self.n_regimes = n_regimes # Regime classification layers self.regime_classifier = nn.Sequential( nn.Linear(d_model, d_model // 2), nn.ReLU(), nn.Dropout(0.1), nn.Linear(d_model // 2, n_regimes) ) # Regime-specific transformations self.regime_transforms = nn.ModuleList([ nn.Linear(d_model, d_model) for _ in range(n_regimes) ]) def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # Global pooling for regime detection pooled = torch.mean(x, dim=1) # (batch, d_model) # Classify market regime regime_logits = self.regime_classifier(pooled) regime_probs = F.softmax(regime_logits, dim=-1) # Apply regime-specific transformations regime_outputs = [] for i, transform in enumerate(self.regime_transforms): regime_output = transform(x) # (batch, seq_len, d_model) regime_outputs.append(regime_output) # Weighted combination based on regime probabilities regime_stack = torch.stack(regime_outputs, dim=0) # (n_regimes, batch, seq_len, d_model) regime_weights = regime_probs.unsqueeze(1).unsqueeze(3) # (batch, 1, 1, n_regimes) # Weighted sum across regimes adapted_output = torch.sum(regime_stack * regime_weights.transpose(0, 3), dim=0) return adapted_output, regime_probs class UncertaintyEstimation(nn.Module): """Uncertainty estimation using Monte Carlo Dropout""" def __init__(self, d_model: int, n_samples: int = 10): super().__init__() self.d_model = d_model self.n_samples = n_samples self.uncertainty_head = nn.Sequential( nn.Linear(d_model, d_model // 2), nn.ReLU(), nn.Dropout(0.5), # Higher dropout for uncertainty estimation nn.Linear(d_model // 2, 1), nn.Sigmoid() ) def forward(self, x: torch.Tensor, training: bool = False) -> Tuple[torch.Tensor, torch.Tensor]: if training or not self.training: # Single forward pass during training or when not in MC mode uncertainty = self.uncertainty_head(x) return uncertainty, uncertainty # Monte Carlo sampling during inference uncertainties = [] for _ in range(self.n_samples): uncertainty = self.uncertainty_head(x) uncertainties.append(uncertainty) uncertainties = torch.stack(uncertainties, dim=0) mean_uncertainty = torch.mean(uncertainties, dim=0) std_uncertainty = torch.std(uncertainties, dim=0) return mean_uncertainty, std_uncertainty class TradingTransformerLayer(nn.Module): """Enhanced transformer layer for trading applications""" def __init__(self, config: TradingTransformerConfig): super().__init__() self.config = config # Enhanced multi-scale attention or standard attention if config.use_multi_scale_attention: self.attention = DeepMultiScaleAttention(config.d_model, config.n_heads) else: self.attention = nn.MultiheadAttention( config.d_model, config.n_heads, dropout=config.dropout, batch_first=True ) # Feed-forward network self.feed_forward = nn.Sequential( nn.Linear(config.d_model, config.d_ff), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_ff, config.d_model) ) # Layer normalization self.norm1 = nn.LayerNorm(config.d_model) self.norm2 = nn.LayerNorm(config.d_model) # Dropout self.dropout = nn.Dropout(config.dropout) # Market regime detection if config.use_market_regime_detection: self.regime_detector = MarketRegimeDetector(config.d_model) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]: # Self-attention with residual connection if isinstance(self.attention, DeepMultiScaleAttention): attn_output = self.attention(x, mask) else: attn_output, _ = self.attention(x, x, x, attn_mask=mask) x = self.norm1(x + self.dropout(attn_output)) # Market regime adaptation regime_probs = None if hasattr(self, 'regime_detector'): x, regime_probs = self.regime_detector(x) # Feed-forward with residual connection ff_output = self.feed_forward(x) x = self.norm2(x + self.dropout(ff_output)) return { 'output': x, 'regime_probs': regime_probs } class AdvancedTradingTransformer(nn.Module): """Advanced transformer model for high-frequency trading""" def __init__(self, config: TradingTransformerConfig): super().__init__() self.config = config # Input projections self.price_projection = nn.Linear(5, config.d_model) # OHLCV self.cob_projection = nn.Linear(config.cob_features, config.d_model) self.tech_projection = nn.Linear(config.tech_features, config.d_model) self.market_projection = nn.Linear(config.market_features, config.d_model) # Positional encoding if config.use_relative_position: self.pos_encoding = RelativePositionalEncoding(config.d_model) else: self.pos_encoding = PositionalEncoding(config.d_model, config.seq_len) # Transformer layers self.layers = nn.ModuleList([ TradingTransformerLayer(config) for _ in range(config.n_layers) ]) # Enhanced output heads for 46M parameter model self.action_head = nn.Sequential( nn.Linear(config.d_model, config.d_model), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model, config.d_model // 2), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 2, config.n_actions) ) if config.confidence_output: self.confidence_head = nn.Sequential( nn.Linear(config.d_model, config.d_model // 2), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 2, config.d_model // 4), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 4, 1), nn.Sigmoid() ) # Enhanced uncertainty estimation if config.use_uncertainty_estimation: self.uncertainty_estimator = UncertaintyEstimation(config.d_model) # Enhanced price prediction head (auxiliary task) self.price_head = nn.Sequential( nn.Linear(config.d_model, config.d_model // 2), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 2, config.d_model // 4), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 4, 1) ) # Additional specialized heads for 46M model self.volatility_head = nn.Sequential( nn.Linear(config.d_model, config.d_model // 2), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 2, 1), nn.Softplus() ) self.trend_strength_head = nn.Sequential( nn.Linear(config.d_model, config.d_model // 2), nn.GELU(), nn.Dropout(config.dropout), nn.Linear(config.d_model // 2, 1), nn.Tanh() ) # Initialize weights self._init_weights() def _init_weights(self): """Initialize model weights""" for module in self.modules(): if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) def forward(self, price_data: torch.Tensor, cob_data: torch.Tensor, tech_data: torch.Tensor, market_data: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]: """ Forward pass of the trading transformer Args: price_data: (batch, seq_len, 5) - OHLCV data cob_data: (batch, seq_len, cob_features) - COB features tech_data: (batch, seq_len, tech_features) - Technical indicators market_data: (batch, seq_len, market_features) - Market microstructure mask: Optional attention mask Returns: Dictionary containing model outputs """ batch_size, seq_len = price_data.shape[:2] # Project inputs to model dimension price_emb = self.price_projection(price_data) cob_emb = self.cob_projection(cob_data) tech_emb = self.tech_projection(tech_data) market_emb = self.market_projection(market_data) # Combine embeddings (could also use cross-attention) x = price_emb + cob_emb + tech_emb + market_emb # Add positional encoding if isinstance(self.pos_encoding, RelativePositionalEncoding): # Relative position encoding is applied in attention pass else: x = self.pos_encoding(x.transpose(0, 1)).transpose(0, 1) # Apply transformer layers regime_probs_history = [] for layer in self.layers: layer_output = layer(x, mask) x = layer_output['output'] if layer_output['regime_probs'] is not None: regime_probs_history.append(layer_output['regime_probs']) # Global pooling for final prediction # Use attention-based pooling pooling_weights = F.softmax( torch.sum(x, dim=-1, keepdim=True), dim=1 ) pooled = torch.sum(x * pooling_weights, dim=1) # Generate outputs outputs = {} # Action prediction action_logits = self.action_head(pooled) outputs['action_logits'] = action_logits outputs['action_probs'] = F.softmax(action_logits, dim=-1) # Confidence prediction if self.config.confidence_output: confidence = self.confidence_head(pooled) outputs['confidence'] = confidence # Uncertainty estimation if self.config.use_uncertainty_estimation: uncertainty_mean, uncertainty_std = self.uncertainty_estimator(pooled) outputs['uncertainty_mean'] = uncertainty_mean outputs['uncertainty_std'] = uncertainty_std # Enhanced price prediction (auxiliary task) price_pred = self.price_head(pooled) outputs['price_prediction'] = price_pred # Additional specialized predictions for 46M model volatility_pred = self.volatility_head(pooled) outputs['volatility_prediction'] = volatility_pred trend_strength_pred = self.trend_strength_head(pooled) outputs['trend_strength_prediction'] = trend_strength_pred # Market regime information if regime_probs_history: outputs['regime_probs'] = torch.stack(regime_probs_history, dim=1) return outputs class TradingTransformerTrainer: """Trainer for the advanced trading transformer""" def __init__(self, model: AdvancedTradingTransformer, config: TradingTransformerConfig): self.model = model self.config = config self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Move model to device self.model.to(self.device) # Optimizer with warmup self.optimizer = optim.AdamW( model.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay ) # Learning rate scheduler self.scheduler = optim.lr_scheduler.OneCycleLR( self.optimizer, max_lr=config.learning_rate, total_steps=10000, # Will be updated based on training data pct_start=0.1 ) # Loss functions self.action_criterion = nn.CrossEntropyLoss() self.price_criterion = nn.MSELoss() self.confidence_criterion = nn.BCELoss() # Training history self.training_history = { 'train_loss': [], 'val_loss': [], 'train_accuracy': [], 'val_accuracy': [], 'learning_rates': [] } def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: """Single training step""" self.model.train() self.optimizer.zero_grad() # Move batch to device batch = {k: v.to(self.device) for k, v in batch.items()} # Forward pass outputs = self.model( batch['price_data'], batch['cob_data'], batch['tech_data'], batch['market_data'] ) # Calculate losses action_loss = self.action_criterion(outputs['action_logits'], batch['actions']) price_loss = self.price_criterion(outputs['price_prediction'], batch['future_prices']) total_loss = action_loss + 0.1 * price_loss # Weight auxiliary task # Add confidence loss if available if 'confidence' in outputs and 'trade_success' in batch: confidence_loss = self.confidence_criterion( outputs['confidence'].squeeze(), batch['trade_success'].float() ) total_loss += 0.1 * confidence_loss # Backward pass total_loss.backward() # Gradient clipping torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm) # Optimizer step self.optimizer.step() self.scheduler.step() # Calculate accuracy predictions = torch.argmax(outputs['action_logits'], dim=-1) accuracy = (predictions == batch['actions']).float().mean() return { 'total_loss': total_loss.item(), 'action_loss': action_loss.item(), 'price_loss': price_loss.item(), 'accuracy': accuracy.item(), 'learning_rate': self.scheduler.get_last_lr()[0] } def validate(self, val_loader: DataLoader) -> Dict[str, float]: """Validation step""" self.model.eval() total_loss = 0 total_accuracy = 0 num_batches = 0 with torch.no_grad(): for batch in val_loader: batch = {k: v.to(self.device) for k, v in batch.items()} outputs = self.model( batch['price_data'], batch['cob_data'], batch['tech_data'], batch['market_data'] ) # Calculate losses action_loss = self.action_criterion(outputs['action_logits'], batch['actions']) price_loss = self.price_criterion(outputs['price_prediction'], batch['future_prices']) total_loss += action_loss.item() + 0.1 * price_loss.item() # Calculate accuracy predictions = torch.argmax(outputs['action_logits'], dim=-1) accuracy = (predictions == batch['actions']).float().mean() total_accuracy += accuracy.item() num_batches += 1 return { 'val_loss': total_loss / num_batches, 'val_accuracy': total_accuracy / num_batches } def train(self, train_loader: DataLoader, val_loader: DataLoader, epochs: int, save_path: str = "NN/models/saved/"): """Full training loop""" best_val_loss = float('inf') for epoch in range(epochs): # Training epoch_losses = [] epoch_accuracies = [] for batch in train_loader: metrics = self.train_step(batch) epoch_losses.append(metrics['total_loss']) epoch_accuracies.append(metrics['accuracy']) # Validation val_metrics = self.validate(val_loader) # Update history avg_train_loss = np.mean(epoch_losses) avg_train_accuracy = np.mean(epoch_accuracies) self.training_history['train_loss'].append(avg_train_loss) self.training_history['val_loss'].append(val_metrics['val_loss']) self.training_history['train_accuracy'].append(avg_train_accuracy) self.training_history['val_accuracy'].append(val_metrics['val_accuracy']) self.training_history['learning_rates'].append(self.scheduler.get_last_lr()[0]) # Logging logger.info(f"Epoch {epoch+1}/{epochs}") logger.info(f" Train Loss: {avg_train_loss:.4f}, Train Acc: {avg_train_accuracy:.4f}") logger.info(f" Val Loss: {val_metrics['val_loss']:.4f}, Val Acc: {val_metrics['val_accuracy']:.4f}") logger.info(f" LR: {self.scheduler.get_last_lr()[0]:.6f}") # Save best model if val_metrics['val_loss'] < best_val_loss: best_val_loss = val_metrics['val_loss'] self.save_model(os.path.join(save_path, 'best_transformer_model.pt')) logger.info(f" New best model saved (val_loss: {best_val_loss:.4f})") def save_model(self, path: str): """Save model and training state""" os.makedirs(os.path.dirname(path), exist_ok=True) torch.save({ 'model_state_dict': self.model.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict(), 'scheduler_state_dict': self.scheduler.state_dict(), 'config': self.config, 'training_history': self.training_history }, path) logger.info(f"Model saved to {path}") def load_model(self, path: str): """Load model and training state""" checkpoint = torch.load(path, map_location=self.device) self.model.load_state_dict(checkpoint['model_state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) self.training_history = checkpoint.get('training_history', self.training_history) logger.info(f"Model loaded from {path}") def create_trading_transformer(config: Optional[TradingTransformerConfig] = None) -> Tuple[AdvancedTradingTransformer, TradingTransformerTrainer]: """Factory function to create trading transformer and trainer""" if config is None: config = TradingTransformerConfig() model = AdvancedTradingTransformer(config) trainer = TradingTransformerTrainer(model, config) return model, trainer # Example usage if __name__ == "__main__": # Create configuration config = TradingTransformerConfig( d_model=256, n_heads=8, n_layers=4, seq_len=50, n_actions=3, use_multi_scale_attention=True, use_market_regime_detection=True, use_uncertainty_estimation=True ) # Create model and trainer model, trainer = create_trading_transformer(config) logger.info(f"Created Advanced Trading Transformer with {sum(p.numel() for p in model.parameters())} parameters") logger.info("Model is ready for training on real market data!")