# Data Stream Management Guide ## Quick Commands ### Check Stream Status ```bash python check_stream.py status ``` ### Generate Snapshot ```bash python check_stream.py snapshot ``` ## What You'll See ### Stream Status Output - ✅ Dashboard is running - 💡 Guidance message - 📝 Data stream location note - Console output examples to look for ### Snapshot Output - ✅ Snapshot saved: `data_snapshots/snapshot_YYYYMMDD_HHMMSS.json` - 📝 Note about data location ## How It Works The script connects to your **running dashboard** instead of creating a new instance: 1. **Checks if dashboard is running** at `http://127.0.0.1:8050` 2. **Provides guidance** on where to find the data stream 3. **Generates snapshots** with current timestamp and metadata ## Where to Find Live Data The **data stream is active inside the dashboard console**. Look for output like: ``` OHLCV (1m): ETH/USDT | O:4335.67 H:4338.92 L:4334.21 C:4336.67 V:125.8 TICK: ETH/USDT | Price:4336.67 Vol:0.0456 Side:buy DQN Prediction: BUY (conf:0.78) Training Exp: Action:1 Reward:0.0234 Done:False ``` ## When Data Appears Data will show in the dashboard console when: 1. **Market data is flowing** (OHLCV, ticks, COB) 2. **Models are making predictions** 3. **Training is active** ## Snapshot Contents Snapshots contain: - Timestamp - Dashboard status - Empty data arrays (data is in dashboard console) - Note about checking console for live data ## Usage Tips - **Start dashboard first**: `python run_clean_dashboard.py` - **Check status** to confirm dashboard is running - **Watch dashboard console** for live data stream - **Generate snapshots** to capture timestamps and metadata - **Wait for market activity** to see data populate ## Files Created - `check_stream.py` - Status and snapshot commands - `data_snapshots/` - Directory for saved snapshots - `snapshot_*.json` - Timestamped snapshot files with metadata