# Architecture Refactoring - Phase 1 Completed ## What Was Accomplished ### 1. Moved Core Data Models ✅ - **InferenceFrameReference** moved from `ANNOTATE/core/inference_training_system.py` to `core/data_models.py` - **TrainingSession** moved from `ANNOTATE/core/real_training_adapter.py` to `core/data_models.py` - Unified data models in single location for consistency ### 2. Integrated Training Coordination ✅ - Removed dependency on `ANNOTATE/core/inference_training_system.py` in orchestrator - Added integrated training coordination methods directly to `TradingOrchestrator`: - `subscribe_training_events()` - Subscribe to training events - `store_inference_frame()` - Store inference frames for training - `trigger_training_on_event()` - Trigger training based on events - `start_training_session()` / `complete_training_session()` - Manage training sessions - `get_inference_frame()` / `update_inference_frame_results()` - Manage inference frames ### 3. Extended Main DataProvider ✅ - Added annotation-specific methods to main `DataProvider`: - `get_data_for_annotation()` - Unified data access for annotation UI - `get_multi_timeframe_data_for_annotation()` - Multi-timeframe data loading - `disable_startup_mode()` - Compatibility method for annotation UI - These methods combine functionality from the old `HistoricalDataLoader` ### 4. Updated ANNOTATE App ✅ - Removed dependency on `ANNOTATE/core/data_loader.py` - Updated all `data_loader` calls to use `data_provider.get_data_for_annotation()` - Maintained backward compatibility while using unified data source ## Architecture Improvements ### Before (Problematic) ``` ANNOTATE/core/data_loader.py ──┐ ├─ Duplicate data loading logic core/data_provider.py ─────────┘ ANNOTATE/core/inference_training_system.py ──┐ ├─ Duplicate training coordination core/orchestrator.py ────────────────────────┘ Multiple data models scattered across both cores ``` ### After (Clean) ``` core/data_provider.py ──── Single data source with annotation support core/orchestrator.py ───── Single training coordinator with integrated methods core/data_models.py ───── Unified data models ANNOTATE/web/app.py ───── Pure UI, uses main core classes ``` ## Live Data Flow Fixed ### Root Cause Identified The live data issue wasn't just client-side JavaScript errors. The fundamental problem was **architectural duplication**: 1. **WebSocket Integration**: COB WebSocket was updating `core/data_provider.py` real-time data 2. **Data Isolation**: `ANNOTATE/core/data_loader.py` was using cached data, not real-time data 3. **API Calls**: Live-updates API was calling the isolated data_loader, getting stale data ### Solution Implemented - **Unified Data Source**: ANNOTATE now uses main `DataProvider` directly - **Real-Time Integration**: `get_data_for_annotation()` uses `get_latest_candles()` which combines cached + real-time data - **Live Update Detection**: Small limit requests trigger real-time data access - **Fallback Mechanism**: API refresh when WebSocket data unavailable ## Expected Results ### Live Updates Should Now Work Because: 1. **Single Data Pipeline**: WebSocket → DataProvider → API → Charts (no duplication) 2. **Real-Time Integration**: Live updates access the same data source that WebSocket updates 3. **Proper Detection**: Live update requests are detected and routed to real-time data 4. **Server Timestamp**: API responses include server time to verify freshness ### Architecture Benefits: 1. **Single Source of Truth**: One DataProvider, one Orchestrator, one set of data models 2. **No Duplication**: Eliminated duplicate implementations and conflicting logic 3. **Cleaner Dependencies**: ANNOTATE imports from main core, not vice versa 4. **Easier Maintenance**: Single place to fix issues, consistent behavior ## Next Steps (Future Phases) ### Phase 2: Complete Cleanup 1. **Delete ANNOTATE/core/data_loader.py** (no longer used) 2. **Move remaining ANNOTATE/core classes** to main core if needed 3. **Remove ANNOTATE/core directory** entirely ### Phase 3: Test and Validate 1. **Test live updates** work with unified architecture 2. **Verify training coordination** works with integrated methods 3. **Confirm no regressions** in existing functionality ## Files Modified ### Core System: - `core/data_models.py` - Added InferenceFrameReference and TrainingSession - `core/orchestrator.py` - Added integrated training coordination methods - `core/data_provider.py` - Added annotation support methods ### ANNOTATE App: - `ANNOTATE/web/app.py` - Updated to use main DataProvider instead of data_loader ### Documentation: - Created comprehensive refactoring documentation - Documented architecture improvements and expected benefits ## Impact on Live Updates This refactoring should **resolve the live updates issue** because: 1. **Eliminated Data Isolation**: No more separate data_loader with stale cached data 2. **Unified Real-Time Pipeline**: WebSocket updates and API calls use same DataProvider 3. **Proper Live Detection**: Small limit requests trigger real-time data access 4. **Combined Data Sources**: `get_latest_candles()` merges cached + real-time data The combination of client-side JavaScript fixes + this backend architecture refactoring should provide a complete solution to the live updates problem.