# Multi-Exchange Consolidated Order Book (COB) Data Provider ## Overview This document describes the implementation of a comprehensive multi-exchange Consolidated Order Book (COB) data provider for the gogo2 trading system. The system aggregates real-time order book data from multiple cryptocurrency exchanges to provide enhanced market liquidity analysis and fine-grain volume bucket data. ## BookMap API Analysis ### What is BookMap? BookMap is a professional trading platform that provides: - **Multibook**: Consolidated order book data from multiple exchanges - **Real-time market depth visualization** - **Order flow analysis tools** - **Market microstructure analytics** ### BookMap API Capabilities Based on research, BookMap offers three types of APIs: 1. **L1 (Add-ons API)**: For creating custom indicators and trading strategies within BookMap 2. **L0 (Connect API)**: For creating custom market data connections (requires approval) 3. **Broadcasting API (BrAPI)**: For data sharing between BookMap add-ons ### BookMap Multibook Features BookMap's Multibook provides: - **Pre-configured synthetic instruments** combining data from major exchanges: - **USD Spot**: BTC, ETH, ADA, etc. from Bitstamp, Bitfinex, Coinbase Pro, Kraken - **USDT Spot**: BTC, ETH, DOGE, etc. from Binance, Huobi, Poloniex - **USDT Perpetual Futures**: From Binance Futures, Bitget, Bybit, OKEx - **Consolidated order book visualization** - **Cross-exchange arbitrage detection** - **Volume-weighted pricing** ### Limitations for External Use **Important Finding**: BookMap's APIs are primarily designed for: - Creating add-ons **within** the BookMap platform - Extending BookMap's functionality - **NOT for external data consumption** The APIs do not provide a simple way to consume Multibook data externally for use in other trading systems. ### Cost and Accessibility - BookMap Multibook requires **Global Plus subscription** - External API access requires approval and specific use cases - Focus is on professional institutional users ## Our Implementation Approach Given the limitations of accessing BookMap's data externally, we've implemented our own multi-exchange COB provider that replicates and extends BookMap's functionality. ## Architecture ### Core Components 1. **MultiExchangeCOBProvider** (`core/multi_exchange_cob_provider.py`) - Main aggregation engine - Real-time WebSocket connections to multiple exchanges - Order book consolidation logic - Fine-grain price bucket generation 2. **COBIntegration** (`core/cob_integration.py`) - Integration layer with existing gogo2 system - CNN/DQN feature generation - Dashboard data formatting - Trading signal generation ### Supported Exchanges | Exchange | WebSocket URL | Market Share Weight | Symbols Supported | |----------|---------------|-------------------|-------------------| | Binance | wss://stream.binance.com:9443/ws/ | 30% | BTC/USDT, ETH/USDT | | Coinbase Pro | wss://ws-feed.exchange.coinbase.com | 25% | BTC-USD, ETH-USD | | Kraken | wss://ws.kraken.com | 20% | XBT/USDT, ETH/USDT | | Huobi | wss://api.huobi.pro/ws | 15% | btcusdt, ethusdt | | Bitfinex | wss://api-pub.bitfinex.com/ws/2 | 10% | tBTCUST, tETHUST | ## Key Features ### 1. Real-Time Order Book Aggregation ```python @dataclass class ConsolidatedOrderBookLevel: price: float total_size: float total_volume_usd: float total_orders: int side: str exchange_breakdown: Dict[str, ExchangeOrderBookLevel] dominant_exchange: str liquidity_score: float timestamp: datetime ``` ### 2. Fine-Grain Price Buckets - **Configurable bucket size** (default: 1 basis point) - **Volume aggregation** at each price level - **Exchange attribution** for each bucket - **Real-time bucket updates** every 100ms ```python price_buckets = { 'bids': { bucket_key: { 'price': bucket_price, 'volume_usd': total_volume, 'size': total_size, 'orders': total_orders, 'exchanges': ['binance', 'coinbase'] } }, 'asks': { ... } } ``` ### 3. Market Microstructure Analysis - **Volume-weighted mid price** calculation - **Liquidity imbalance** detection - **Cross-exchange spread** analysis - **Exchange dominance** metrics - **Market depth** distribution ### 4. CNN/DQN Integration #### CNN Features (220 dimensions) - **Order book levels**: 20 levels × 5 features × 2 sides = 200 features - **Market microstructure**: 20 additional features - **Normalized and scaled** for neural network consumption #### DQN State Features (30 dimensions) - **Normalized order book state**: 20 features - **Market state indicators**: 10 features - **Real-time market regime** detection ### 5. Trading Signal Generation - **Liquidity imbalance signals** - **Arbitrage opportunity detection** - **Liquidity anomaly alerts** - **Market microstructure pattern recognition** ## Implementation Details ### Data Structures ```python @dataclass class COBSnapshot: symbol: str timestamp: datetime consolidated_bids: List[ConsolidatedOrderBookLevel] consolidated_asks: List[ConsolidatedOrderBookLevel] exchanges_active: List[str] volume_weighted_mid: float total_bid_liquidity: float total_ask_liquidity: float spread_bps: float liquidity_imbalance: float price_buckets: Dict[str, Dict[str, float]] ``` ### Real-Time Processing 1. **WebSocket Connections**: Independent connections to each exchange 2. **Order Book Updates**: Process depth updates at 100ms intervals 3. **Consolidation Engine**: Aggregate order books every 100ms 4. **Bucket Generation**: Create fine-grain volume buckets 5. **Feature Generation**: Compute CNN/DQN features in real-time 6. **Signal Detection**: Analyze patterns and generate trading signals ### Performance Optimizations - **Asynchronous processing** for all WebSocket connections - **Lock-based synchronization** for thread-safe data access - **Deque-based storage** for efficient historical data management - **Configurable update frequencies** for different components ## Integration with Existing System ### Dashboard Integration ```python # Add COB data to dashboard cob_integration.add_dashboard_callback(dashboard.update_cob_data) # Dashboard receives: { 'consolidated_bids': [...], 'consolidated_asks': [...], 'price_buckets': {...}, 'market_quality': {...}, 'recent_signals': [...] } ``` ### AI Model Integration ```python # CNN feature generation cob_integration.add_cnn_callback(cnn_model.process_cob_features) # DQN state updates cob_integration.add_dqn_callback(dqn_agent.update_cob_state) ``` ### Trading System Integration ```python # Signal-based trading for signal in cob_integration.get_recent_signals(symbol): if signal['confidence'] > 0.8: trading_executor.process_cob_signal(signal) ``` ## Usage Examples ### Basic Setup ```python from core.multi_exchange_cob_provider import MultiExchangeCOBProvider from core.cob_integration import COBIntegration # Initialize COB provider symbols = ['BTC/USDT', 'ETH/USDT'] cob_provider = MultiExchangeCOBProvider( symbols=symbols, bucket_size_bps=1.0 # 1 basis point granularity ) # Integration layer cob_integration = COBIntegration(symbols=symbols) # Start streaming await cob_integration.start() ``` ### Accessing Data ```python # Get consolidated order book cob_snapshot = cob_integration.get_cob_snapshot('BTC/USDT') # Get fine-grain price buckets price_buckets = cob_integration.get_price_buckets('BTC/USDT') # Get exchange breakdown exchange_breakdown = cob_integration.get_exchange_breakdown('BTC/USDT') # Get CNN features cnn_features = cob_integration.get_cob_features('BTC/USDT') # Get recent trading signals signals = cob_integration.get_recent_signals('BTC/USDT', count=10) ``` ### Market Analysis ```python # Market depth analysis depth_analysis = cob_integration.get_market_depth_analysis('BTC/USDT') print(f"Active exchanges: {depth_analysis['exchanges_active']}") print(f"Total liquidity: ${depth_analysis['total_bid_liquidity'] + depth_analysis['total_ask_liquidity']:,.0f}") print(f"Spread: {depth_analysis['spread_bps']:.2f} bps") print(f"Liquidity imbalance: {depth_analysis['liquidity_imbalance']:.3f}") ``` ## Testing Use the provided test script to validate functionality: ```bash python test_multi_exchange_cob.py ``` The test script provides: - **Basic functionality testing** - **Feature generation validation** - **Dashboard integration testing** - **Signal analysis verification** - **Performance monitoring** - **Comprehensive test reporting** ## Advantages Over BookMap ### Our Implementation Benefits 1. **Full Control**: Complete customization of aggregation logic 2. **Cost Effective**: Uses free exchange APIs instead of paid BookMap subscription 3. **Direct Integration**: Seamless integration with existing gogo2 architecture 4. **Extended Features**: Custom signal generation and analysis 5. **Fine-Grain Control**: Configurable bucket sizes and update frequencies 6. **Open Source**: Fully customizable and extensible ### Comparison with BookMap Multibook | Feature | BookMap Multibook | Our Implementation | |---------|------------------|-------------------| | **Data Sources** | Pre-configured instruments | Fully configurable exchanges | | **Cost** | Global Plus subscription | Free (exchange APIs) | | **Integration** | BookMap platform only | Direct gogo2 integration | | **Customization** | Limited | Full control | | **Bucket Granularity** | Fixed by BookMap | Configurable (1 bps default) | | **Signal Generation** | BookMap's algorithms | Custom trading signals | | **AI Integration** | Limited | Native CNN/DQN features | | **Real-time Updates** | BookMap frequency | 100ms configurable | ## Future Enhancements ### Planned Improvements 1. **Additional Exchanges**: OKX, Bybit, KuCoin integration 2. **Options/Futures Support**: Extend beyond spot markets 3. **Advanced Analytics**: Machine learning-based pattern recognition 4. **Risk Management**: Real-time exposure and risk metrics 5. **Cross-Asset Analysis**: Multi-symbol correlation analysis 6. **Historical Analysis**: COB pattern backtesting 7. **API Rate Optimization**: Intelligent request management 8. **Fault Tolerance**: Exchange failover and redundancy ### Performance Optimizations 1. **WebSocket Pooling**: Shared connections for multiple symbols 2. **Data Compression**: Optimized data structures 3. **Caching Strategies**: Intelligent feature caching 4. **Parallel Processing**: Multi-threaded consolidation 5. **Memory Management**: Optimized historical data storage ## Configuration ### Exchange Configuration ```python exchange_configs = { 'binance': ExchangeConfig( exchange_type=ExchangeType.BINANCE, weight=0.3, # 30% weight in aggregation websocket_url="wss://stream.binance.com:9443/ws/", symbols_mapping={'BTC/USDT': 'BTCUSDT'}, rate_limits={'requests_per_minute': 1200} ) } ``` ### Bucket Configuration ```python # Configure price bucket granularity bucket_size_bps = 1.0 # 1 basis point per bucket bucket_update_frequency = 100 # Update every 100ms ``` ### Feature Configuration ```python # CNN feature dimensions cnn_feature_config = { 'order_book_levels': 20, 'features_per_level': 5, 'microstructure_features': 20, 'total_dimensions': 220 } ``` ## Monitoring and Diagnostics ### Performance Metrics - **Update rates**: COB updates per second - **Processing latency**: Time from exchange update to consolidation - **Feature generation time**: CNN/DQN feature computation time - **Memory usage**: Data structure memory consumption - **Connection health**: WebSocket connection status ### Logging Comprehensive logging includes: - Exchange connection events - Order book update statistics - Feature generation metrics - Signal generation events - Error handling and recovery ## Conclusion The Multi-Exchange COB Provider successfully replicates and extends BookMap's Multibook functionality while providing: 1. **Superior Integration** with the gogo2 trading system 2. **Cost Effectiveness** using free exchange APIs 3. **Enhanced Customization** for specific trading requirements 4. **Real-time Performance** optimized for high-frequency trading 5. **Advanced Analytics** with native AI model integration This implementation provides a robust foundation for multi-exchange order book analysis and represents a significant enhancement to the gogo2 trading platform's market data capabilities. ## Files Created 1. `core/multi_exchange_cob_provider.py` - Main COB aggregation engine 2. `core/cob_integration.py` - Integration layer with gogo2 system 3. `test_multi_exchange_cob.py` - Comprehensive testing framework 4. `MULTI_EXCHANGE_COB_PROVIDER_SUMMARY.md` - This documentation The system is ready for integration and testing with the existing gogo2 trading infrastructure.