#!/usr/bin/env python3 """ Test Enhanced Trading System Verify that both RL and CNN learning pipelines are active """ import asyncio import logging import sys from pathlib import Path # Add project root to path project_root = Path(__file__).parent sys.path.insert(0, str(project_root)) from core.config import get_config from core.data_provider import DataProvider from core.enhanced_orchestrator import EnhancedTradingOrchestrator from training.enhanced_cnn_trainer import EnhancedCNNTrainer from training.enhanced_rl_trainer import EnhancedRLTrainer # Setup logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) async def test_enhanced_system(): """Test the enhanced trading system components""" logger.info("Testing Enhanced Trading System...") try: # Initialize components config = get_config() data_provider = DataProvider(config) orchestrator = EnhancedTradingOrchestrator(data_provider) # Initialize trainers cnn_trainer = EnhancedCNNTrainer(config, orchestrator) rl_trainer = EnhancedRLTrainer(config, orchestrator) logger.info("COMPONENT STATUS:") logger.info(f"✓ Data Provider: {len(config.symbols)} symbols, {len(config.timeframes)} timeframes") logger.info(f"✓ Enhanced Orchestrator: Confidence threshold {orchestrator.confidence_threshold}") logger.info(f"✓ CNN Trainer: Model initialized") logger.info(f"✓ RL Trainer: {len(rl_trainer.agents)} agents initialized") # Test decision making logger.info("\nTesting decision making...") decisions_dict = await orchestrator.make_coordinated_decisions() decisions = [decision for decision in decisions_dict.values() if decision is not None] logger.info(f"✓ Generated {len(decisions)} trading decisions") for decision in decisions: logger.info(f" - {decision.action} {decision.symbol} @ ${decision.price:.2f} (conf: {decision.confidence:.1%})") # Test RL learning capability logger.info("\nTesting RL learning capability...") for symbol, agent in rl_trainer.agents.items(): buffer_size = len(agent.replay_buffer) epsilon = agent.epsilon logger.info(f" - {symbol} RL Agent: Buffer={buffer_size}, Epsilon={epsilon:.3f}") # Test CNN training capability logger.info("\nTesting CNN training capability...") perfect_moves = orchestrator.get_perfect_moves_for_training() logger.info(f" - Perfect moves available: {len(perfect_moves)}") if len(perfect_moves) > 0: logger.info(" - CNN ready for training on perfect moves") else: logger.info(" - CNN waiting for perfect moves to accumulate") # Test configuration logger.info("\nTraining Configuration:") logger.info(f" - CNN training interval: {config.training.get('cnn_training_interval', 'N/A')} seconds") logger.info(f" - RL training interval: {config.training.get('rl_training_interval', 'N/A')} seconds") logger.info(f" - Min perfect moves for CNN: {config.training.get('min_perfect_moves', 'N/A')}") logger.info(f" - Min experiences for RL: {config.training.get('min_experiences', 'N/A')}") logger.info(f" - Continuous learning: {config.training.get('continuous_learning', False)}") logger.info("\n✅ Enhanced Trading System test completed successfully!") logger.info("LEARNING SYSTEMS STATUS:") logger.info("✓ RL agents ready for continuous learning from trading decisions") logger.info("✓ CNN trainer ready for pattern learning from perfect moves") logger.info("✓ Enhanced orchestrator coordinating multi-modal decisions") return True except Exception as e: logger.error(f"❌ Test failed: {e}") import traceback traceback.print_exc() return False async def main(): """Main test function""" logger.info("🚀 Starting Enhanced Trading System Test...") success = await test_enhanced_system() if success: logger.info("\n🎉 All tests passed! Enhanced trading system is ready.") logger.info("You can now run the enhanced dashboard or main trading system.") else: logger.error("\n💥 Tests failed! Please check the configuration and try again.") sys.exit(1) if __name__ == "__main__": asyncio.run(main())