# Scalping Dashboard WebSocket Tick Streaming Implementation ## Major Improvements Implemented ### 1. WebSocket Real-Time Tick Streaming for Main Chart **Problem**: Main 1s chart was not loading due to candlestick chart issues and lack of real-time data **Solution**: Implemented direct WebSocket tick streaming with zero latency #### Key Features: - **Direct WebSocket Feed**: Main chart now uses live tick data from Binance WebSocket - **Tick Buffer**: Maintains 200 most recent ticks for immediate chart updates - **Zero Latency**: No API calls or caching - direct from WebSocket stream - **Volume Integration**: Real-time volume data included in tick stream #### Implementation Details: ```python # Real-time tick buffer for main chart self.live_tick_buffer = { 'ETH/USDT': [], 'BTC/USDT': [] } # WebSocket tick processing with volume tick_entry = { 'timestamp': timestamp, 'price': price, 'volume': volume, 'open': price, # For tick data, OHLC are same as current price 'high': price, 'low': price, 'close': price } ``` ### 2. Fixed Candlestick Chart Issues **Problem**: Candlestick charts failing due to unsupported `hovertemplate` property **Solution**: Removed incompatible properties and optimized chart creation #### Changes Made: - Removed `hovertemplate` from `go.Candlestick()` traces - Fixed volume bar chart properties - Maintained proper OHLC data structure - Added proper error handling for chart creation ### 3. Enhanced Dynamic Throttling System **Problem**: Dashboard was over-throttling and preventing updates **Solution**: Optimized throttling parameters and logic #### Improvements: - **More Lenient Thresholds**: Fast < 1.0s, Slow > 3.0s, Critical > 8.0s - **Reduced Max Throttle Level**: From 5 to 3 levels - **Faster Recovery**: Reduced consecutive updates needed from 5 to 3 - **Conservative Start**: Begin with 2-second intervals for stability #### Performance Optimization: ```python # Optimized throttling parameters self.update_frequency = 2000 # Start conservative (2s) self.min_frequency = 5000 # Max throttling (5s) self.max_frequency = 1000 # Min throttling (1s) self.throttle_level = 0 # Max level 3 (reduced from 5) ``` ### 4. Dual Chart System **Main Chart**: WebSocket tick streaming (zero latency) - Real-time tick data from WebSocket - Line chart for high-frequency data visualization - Live price markers and trading signals - Volume overlay on secondary axis **Small Charts**: Traditional candlestick charts - ETH/USDT: 1m, 1h, 1d timeframes - BTC/USDT: 1s reference chart - Proper OHLC candlestick visualization - Live price indicators ### 5. WebSocket Integration Enhancements **Enhanced Data Processing**: - Volume data extraction from WebSocket - Timestamp synchronization - Buffer size management (200 ticks max) - Error handling and reconnection logic **Real-Time Features**: - Live price updates every tick - Tick count display - WebSocket connection status - Automatic buffer maintenance ## Technical Implementation ### WebSocket Tick Processing ```python def _websocket_price_stream(self, symbol: str): # Enhanced to capture volume and create tick entries tick_data = json.loads(message) price = float(tick_data.get('c', 0)) volume = float(tick_data.get('v', 0)) timestamp = datetime.now() # Add to tick buffer for real-time chart tick_entry = { 'timestamp': timestamp, 'price': price, 'volume': volume, 'open': price, 'high': price, 'low': price, 'close': price } self.live_tick_buffer[formatted_symbol].append(tick_entry) ``` ### Main Tick Chart Creation ```python def _create_main_tick_chart(self, symbol: str): # Convert tick buffer to DataFrame df = pd.DataFrame(tick_buffer) # Line chart for high-frequency tick data fig.add_trace(go.Scatter( x=df['timestamp'], y=df['price'], mode='lines', name=f"{symbol} Live Ticks", line=dict(color='#00ff88', width=2) )) # Volume bars on secondary axis fig.add_trace(go.Bar( x=df['timestamp'], y=df['volume'], name="Tick Volume", yaxis='y2', opacity=0.3 )) ``` ## Performance Benefits ### 1. Zero Latency Main Chart - **Direct WebSocket**: No API delays - **Tick-Level Updates**: Sub-second price movements - **Buffer Management**: Efficient memory usage - **Real-Time Volume**: Live trading activity ### 2. Optimized Update Frequency - **Adaptive Throttling**: Responds to system performance - **Conservative Start**: Stable initial operation - **Fast Recovery**: Quick optimization when performance improves - **Intelligent Skipping**: Maintains responsiveness under load ### 3. Robust Error Handling - **Chart Fallbacks**: Graceful degradation on errors - **WebSocket Reconnection**: Automatic recovery - **Data Validation**: Prevents crashes from bad data - **Performance Monitoring**: Continuous optimization ## User Experience Improvements ### 1. Immediate Visual Feedback - **Live Tick Stream**: Real-time price movements - **Trading Signals**: Buy/sell markers on charts - **Volume Activity**: Live trading volume display - **Connection Status**: WebSocket connectivity indicators ### 2. Professional Trading Interface - **Candlestick Charts**: Proper OHLC visualization for small charts - **Tick Stream**: High-frequency data for main chart - **Multiple Timeframes**: 1s, 1m, 1h, 1d views - **Volume Integration**: Trading activity visualization ### 3. Stable Performance - **Dynamic Throttling**: Prevents system overload - **Error Recovery**: Graceful handling of issues - **Memory Management**: Efficient tick buffer handling - **Connection Resilience**: Automatic WebSocket reconnection ## Testing Results ### ✅ Fixed Issues 1. **Main Chart Loading**: Now displays WebSocket tick stream 2. **Candlestick Charts**: Proper OHLC visualization in small charts 3. **Volume Display**: Real-time volume data shown correctly 4. **Update Frequency**: Optimized throttling prevents over-throttling 5. **Chart Responsiveness**: Immediate updates from WebSocket feed ### ✅ Performance Metrics 1. **Dashboard Startup**: HTTP 200 response confirmed 2. **WebSocket Connections**: Active connections established 3. **Tick Buffer**: 200-tick buffer maintained efficiently 4. **Chart Updates**: Real-time updates without lag 5. **Error Handling**: Graceful fallbacks implemented ## Usage Instructions ### Launch Dashboard ```bash python run_scalping_dashboard.py --port 8051 --leverage 500 ``` ### Access Dashboard - **URL**: http://127.0.0.1:8051 - **Main Chart**: ETH/USDT WebSocket tick stream - **Small Charts**: Traditional candlestick charts - **Real-Time Data**: Live price and volume updates ### Monitor Performance - **Throttle Level**: Displayed in logs - **Update Frequency**: Adaptive based on performance - **Tick Count**: Shown in main chart title - **WebSocket Status**: Connection indicators in interface ## Conclusion The scalping dashboard now features: - **Zero-latency main chart** with WebSocket tick streaming - **Proper candlestick charts** for traditional timeframes - **Real-time volume data** integration - **Optimized performance** with intelligent throttling - **Professional trading interface** with live signals The implementation provides immediate visual feedback for scalping operations while maintaining system stability and performance optimization.