""" Annotation Manager - Manages trade annotations and test case generation Handles storage, retrieval, and test case generation from manual trade annotations. """ import json import uuid from pathlib import Path from datetime import datetime from typing import List, Dict, Optional, Any from dataclasses import dataclass, asdict import logging logger = logging.getLogger(__name__) @dataclass class TradeAnnotation: """Represents a manually marked trade""" annotation_id: str symbol: str timeframe: str entry: Dict[str, Any] # {timestamp, price, index} exit: Dict[str, Any] # {timestamp, price, index} direction: str # 'LONG' or 'SHORT' profit_loss_pct: float notes: str = "" created_at: str = None market_context: Dict[str, Any] = None def __post_init__(self): if self.created_at is None: self.created_at = datetime.now().isoformat() if self.market_context is None: self.market_context = {} class AnnotationManager: """Manages trade annotations and test case generation""" def __init__(self, storage_path: str = "ANNOTATE/data/annotations"): """Initialize annotation manager""" self.storage_path = Path(storage_path) self.storage_path.mkdir(parents=True, exist_ok=True) self.annotations_file = self.storage_path / "annotations_db.json" self.test_cases_dir = self.storage_path.parent / "test_cases" self.test_cases_dir.mkdir(parents=True, exist_ok=True) self.annotations_db = self._load_annotations() logger.info(f"AnnotationManager initialized with storage: {self.storage_path}") def _load_annotations(self) -> Dict[str, List[Dict]]: """Load annotations from storage""" if self.annotations_file.exists(): try: with open(self.annotations_file, 'r') as f: data = json.load(f) logger.info(f"Loaded {len(data.get('annotations', []))} annotations") return data except Exception as e: logger.error(f"Error loading annotations: {e}") return {"annotations": [], "metadata": {}} else: return {"annotations": [], "metadata": {}} def _save_annotations(self): """Save annotations to storage""" try: # Update metadata self.annotations_db["metadata"] = { "total_annotations": len(self.annotations_db["annotations"]), "last_updated": datetime.now().isoformat() } with open(self.annotations_file, 'w') as f: json.dump(self.annotations_db, f, indent=2) logger.info(f"Saved {len(self.annotations_db['annotations'])} annotations") except Exception as e: logger.error(f"Error saving annotations: {e}") raise def create_annotation(self, entry_point: Dict, exit_point: Dict, symbol: str, timeframe: str, entry_market_state: Dict = None, exit_market_state: Dict = None) -> TradeAnnotation: """Create new trade annotation""" # Calculate direction and P&L entry_price = entry_point['price'] exit_price = exit_point['price'] if exit_price > entry_price: direction = 'LONG' profit_loss_pct = ((exit_price - entry_price) / entry_price) * 100 else: direction = 'SHORT' profit_loss_pct = ((entry_price - exit_price) / entry_price) * 100 annotation = TradeAnnotation( annotation_id=str(uuid.uuid4()), symbol=symbol, timeframe=timeframe, entry=entry_point, exit=exit_point, direction=direction, profit_loss_pct=profit_loss_pct ) logger.info(f"Created annotation: {annotation.annotation_id} ({direction}, {profit_loss_pct:.2f}%)") return annotation def save_annotation(self, annotation: TradeAnnotation): """Save annotation to storage""" # Convert to dict ann_dict = asdict(annotation) # Add to database self.annotations_db["annotations"].append(ann_dict) # Save to file self._save_annotations() logger.info(f"Saved annotation: {annotation.annotation_id}") def get_annotations(self, symbol: str = None, timeframe: str = None) -> List[TradeAnnotation]: """Retrieve annotations with optional filtering""" annotations = self.annotations_db.get("annotations", []) # Filter by symbol if symbol: annotations = [a for a in annotations if a.get('symbol') == symbol] # Filter by timeframe if timeframe: annotations = [a for a in annotations if a.get('timeframe') == timeframe] # Convert to TradeAnnotation objects result = [] for ann_dict in annotations: try: annotation = TradeAnnotation(**ann_dict) result.append(annotation) except Exception as e: logger.error(f"Error converting annotation: {e}") return result def delete_annotation(self, annotation_id: str): """Delete annotation""" original_count = len(self.annotations_db["annotations"]) self.annotations_db["annotations"] = [ a for a in self.annotations_db["annotations"] if a.get('annotation_id') != annotation_id ] if len(self.annotations_db["annotations"]) < original_count: self._save_annotations() logger.info(f"Deleted annotation: {annotation_id}") else: logger.warning(f"Annotation not found: {annotation_id}") def generate_test_case(self, annotation: TradeAnnotation, data_provider=None) -> Dict: """ Generate test case from annotation in realtime format Args: annotation: TradeAnnotation object data_provider: Optional DataProvider instance to fetch market context Returns: Test case dictionary in realtime format """ test_case = { "test_case_id": f"annotation_{annotation.annotation_id}", "symbol": annotation.symbol, "timestamp": annotation.entry['timestamp'], "action": "BUY" if annotation.direction == "LONG" else "SELL", "market_state": {}, "expected_outcome": { "direction": annotation.direction, "profit_loss_pct": annotation.profit_loss_pct, "holding_period_seconds": self._calculate_holding_period(annotation), "exit_price": annotation.exit['price'], "entry_price": annotation.entry['price'] }, "annotation_metadata": { "annotator": "manual", "confidence": 1.0, "notes": annotation.notes, "created_at": annotation.created_at, "timeframe": annotation.timeframe } } # Populate market state if data_provider is available if data_provider and annotation.market_context: test_case["market_state"] = annotation.market_context elif data_provider: # Fetch market state at entry time try: entry_time = datetime.fromisoformat(annotation.entry['timestamp'].replace('Z', '+00:00')) # Fetch OHLCV data for all timeframes timeframes = ['1s', '1m', '1h', '1d'] market_state = {} for tf in timeframes: df = data_provider.get_historical_data( symbol=annotation.symbol, timeframe=tf, limit=100 ) if df is not None and not df.empty: # Filter to data before entry time df = df[df.index <= entry_time] if not df.empty: # Convert to list format market_state[f'ohlcv_{tf}'] = { 'timestamps': df.index.strftime('%Y-%m-%d %H:%M:%S').tolist(), 'open': df['open'].tolist(), 'high': df['high'].tolist(), 'low': df['low'].tolist(), 'close': df['close'].tolist(), 'volume': df['volume'].tolist() } test_case["market_state"] = market_state logger.info(f"Populated market state with {len(market_state)} timeframes") except Exception as e: logger.error(f"Error fetching market state: {e}") test_case["market_state"] = {} else: test_case["market_state"] = {} # Save test case to file test_case_file = self.test_cases_dir / f"{test_case['test_case_id']}.json" with open(test_case_file, 'w') as f: json.dump(test_case, f, indent=2) logger.info(f"Generated test case: {test_case['test_case_id']}") return test_case def _calculate_holding_period(self, annotation: TradeAnnotation) -> float: """Calculate holding period in seconds""" try: entry_time = datetime.fromisoformat(annotation.entry['timestamp'].replace('Z', '+00:00')) exit_time = datetime.fromisoformat(annotation.exit['timestamp'].replace('Z', '+00:00')) return (exit_time - entry_time).total_seconds() except Exception as e: logger.error(f"Error calculating holding period: {e}") return 0.0 def export_annotations(self, annotations: List[TradeAnnotation] = None, format_type: str = 'json') -> Path: """Export annotations to file""" if annotations is None: annotations = self.get_annotations() # Convert to dicts export_data = [asdict(ann) for ann in annotations] # Create export file timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') export_file = self.storage_path / f"export_{timestamp}.{format_type}" if format_type == 'json': with open(export_file, 'w') as f: json.dump(export_data, f, indent=2) elif format_type == 'csv': import csv with open(export_file, 'w', newline='') as f: if export_data: writer = csv.DictWriter(f, fieldnames=export_data[0].keys()) writer.writeheader() writer.writerows(export_data) logger.info(f"Exported {len(annotations)} annotations to {export_file}") return export_file