# Enhanced Multi-Modal Trading System Configuration # Trading Symbols (extendable/configurable) symbols: - "ETH/USDT" - "BTC/USDT" # Timeframes for multi-timeframe analysis timeframes: - "1m" - "5m" - "15m" - "1h" - "4h" - "1d" # Data Provider Settings data: provider: "binance" cache_enabled: true cache_dir: "cache" historical_limit: 1000 real_time_enabled: true websocket_reconnect: true feature_engineering: technical_indicators: true market_regime_detection: true volatility_analysis: true # Enhanced CNN Configuration cnn: window_size: 20 features: ["open", "high", "low", "close", "volume"] timeframes: ["1m", "5m", "15m", "1h", "4h", "1d"] hidden_layers: [64, 128, 256] dropout: 0.2 learning_rate: 0.001 batch_size: 32 epochs: 100 confidence_threshold: 0.6 early_stopping_patience: 10 model_dir: "models/enhanced_cnn" # Timeframe-specific model weights timeframe_importance: "1m": 0.05 # Noise filtering "5m": 0.10 # Short-term momentum "15m": 0.15 # Entry/exit timing "1h": 0.25 # Medium-term trend "4h": 0.25 # Stronger trend confirmation "1d": 0.20 # Long-term direction # Enhanced RL Agent Configuration rl: state_size: 100 # Will be calculated dynamically based on features action_space: 3 # BUY, HOLD, SELL hidden_size: 256 epsilon: 1.0 epsilon_decay: 0.995 epsilon_min: 0.01 learning_rate: 0.0001 gamma: 0.99 memory_size: 10000 batch_size: 64 target_update_freq: 1000 buffer_size: 10000 model_dir: "models/enhanced_rl" # Market regime adaptation market_regime_weights: trending: 1.2 # Higher confidence in trending markets ranging: 0.8 # Lower confidence in ranging markets volatile: 0.6 # Much lower confidence in volatile markets # Prioritized experience replay replay_alpha: 0.6 # Priority exponent replay_beta: 0.4 # Importance sampling exponent # Enhanced Orchestrator Settings orchestrator: # Model weights for decision combination cnn_weight: 0.7 # Weight for CNN predictions rl_weight: 0.3 # Weight for RL decisions confidence_threshold: 0.6 # Increased for enhanced system decision_frequency: 30 # Seconds between decisions (faster) # Multi-symbol coordination symbol_correlation_matrix: "ETH/USDT-BTC/USDT": 0.85 # ETH-BTC correlation # Perfect move marking perfect_move_threshold: 0.02 # 2% price change to mark as significant perfect_move_buffer_size: 10000 # RL evaluation settings evaluation_delay: 3600 # Evaluate actions after 1 hour reward_calculation: success_multiplier: 10 # Reward for correct predictions failure_penalty: 5 # Penalty for wrong predictions confidence_scaling: true # Scale rewards by confidence # Training Configuration training: learning_rate: 0.001 batch_size: 32 epochs: 100 validation_split: 0.2 early_stopping_patience: 10 # CNN specific cnn_training_interval: 21600 # Train every 6 hours min_perfect_moves: 200 # Minimum moves before training # RL specific rl_training_interval: 3600 # Train every hour min_experiences: 100 # Minimum experiences before training training_steps_per_cycle: 10 # Training steps per cycle # Trading Execution trading: max_position_size: 0.05 # Maximum position size (5% of balance) stop_loss: 0.02 # 2% stop loss take_profit: 0.05 # 5% take profit trading_fee: 0.0002 # 0.02% trading fee min_trade_interval: 30 # Minimum seconds between trades (faster) # Risk management max_daily_trades: 20 # Maximum trades per day max_concurrent_positions: 2 # Max positions across symbols position_sizing: confidence_scaling: true # Scale position by confidence base_size: 0.02 # 2% base position max_size: 0.05 # 5% maximum position # Memory Management memory: total_limit_gb: 8.0 # Total system memory limit model_limit_gb: 2.0 # Per-model memory limit cleanup_interval: 1800 # Memory cleanup every 30 minutes # Web Dashboard web: host: "127.0.0.1" port: 8050 debug: false update_interval: 1000 # Milliseconds chart_history: 100 # Number of candles to show # Enhanced dashboard features show_timeframe_analysis: true show_confidence_scores: true show_perfect_moves: true show_rl_metrics: true # Logging logging: level: "INFO" format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s" file: "logs/enhanced_trading.log" max_size: 10485760 # 10MB backup_count: 5 # Component-specific logging orchestrator_level: "INFO" cnn_level: "INFO" rl_level: "INFO" training_level: "INFO" # Model Directories model_dir: "models" data_dir: "data" cache_dir: "cache" logs_dir: "logs" # GPU/Performance gpu: enabled: true memory_fraction: 0.8 # Use 80% of GPU memory allow_growth: true # Allow dynamic memory allocation # Monitoring and Alerting monitoring: tensorboard_enabled: true tensorboard_log_dir: "logs/tensorboard" metrics_interval: 300 # Log metrics every 5 minutes performance_alerts: true # Performance thresholds min_confidence_threshold: 0.3 max_memory_usage: 0.9 # 90% of available memory max_decision_latency: 10 # 10 seconds max per decision # Backtesting (for future implementation) backtesting: start_date: "2024-01-01" end_date: "2024-12-31" initial_balance: 10000 commission: 0.0002 slippage: 0.0001