#!/usr/bin/env python3 """ Test script to check training status functionality """ import logging logging.basicConfig(level=logging.INFO) print("Testing training status functionality...") try: from web.old_archived.scalping_dashboard import create_scalping_dashboard from core.data_provider import DataProvider from core.enhanced_orchestrator import EnhancedTradingOrchestrator print("āœ… Imports successful") # Create components data_provider = DataProvider() orchestrator = EnhancedTradingOrchestrator(data_provider) dashboard = create_scalping_dashboard(data_provider, orchestrator) print("āœ… Dashboard created successfully") # Test training status training_status = dashboard._get_model_training_status() print("\nšŸ“Š Training Status:") print(f"CNN Status: {training_status['cnn']['status']}") print(f"CNN Accuracy: {training_status['cnn']['accuracy']:.1%}") print(f"CNN Loss: {training_status['cnn']['loss']:.4f}") print(f"CNN Epochs: {training_status['cnn']['epochs']}") print(f"RL Status: {training_status['rl']['status']}") print(f"RL Win Rate: {training_status['rl']['win_rate']:.1%}") print(f"RL Episodes: {training_status['rl']['episodes']}") print(f"RL Memory: {training_status['rl']['memory_size']}") # Test extrema stats if hasattr(orchestrator, 'get_extrema_stats'): extrema_stats = orchestrator.get_extrema_stats() print(f"\nšŸŽÆ Extrema Stats:") print(f"Total extrema detected: {extrema_stats.get('total_extrema_detected', 0)}") print(f"Training queue size: {extrema_stats.get('training_queue_size', 0)}") print("āœ… Extrema stats available") else: print("āŒ Extrema stats not available") # Test tick cache print(f"\nšŸ“ˆ Training Data:") print(f"Tick cache size: {len(dashboard.tick_cache)}") print(f"1s bars cache size: {len(dashboard.one_second_bars)}") print(f"Streaming status: {dashboard.is_streaming}") print("\nāœ… All tests completed successfully!") except Exception as e: print(f"āŒ Error: {e}") import traceback traceback.print_exc()