# Live Training Implementation Status ## ✅ Phase 1: Backend Integration (COMPLETED) ### 1. Orchestrator Integration **File**: `core/orchestrator.py` #### Initialization ```python # Initialize EnhancedRealtimeTrainingSystem if ENHANCED_TRAINING_AVAILABLE: self.enhanced_training_system = EnhancedRealtimeTrainingSystem( orchestrator=self, data_provider=self.data_provider, dashboard=None ) logger.info("EnhancedRealtimeTrainingSystem initialized successfully") ``` #### Methods Added 1. **`start_live_training()`** - Start live inference and training 2. **`stop_live_training()`** - Stop live training 3. **`is_live_training_active()`** - Check if active 4. **`get_live_training_stats()`** - Get performance statistics --- ### 2. API Endpoints **File**: `ANNOTATE/web/app.py` #### Endpoints Added | Endpoint | Method | Description | |----------|--------|-------------| | `/api/live-training/start` | POST | Start live training mode | | `/api/live-training/stop` | POST | Stop live training mode | | `/api/live-training/status` | GET | Get status and statistics | #### Example Usage **Start Live Training:** ```bash curl -X POST http://localhost:8051/api/live-training/start ``` Response: ```json { "success": true, "status": "started", "message": "Live training mode started" } ``` **Get Status:** ```bash curl http://localhost:8051/api/live-training/status ``` Response: ```json { "success": true, "active": true, "stats": { "predictions_per_sec": 1.0, "training_batches_per_min": 6, "accuracy": 0.75, "models": { "dqn": {"loss": 0.234, "accuracy": 0.78}, "cnn": {"loss": 0.156, "accuracy": 0.82} } } } ``` --- ## ⏳ Phase 2: Core Functionality (NEEDS IMPLEMENTATION) ### What's Missing The `EnhancedRealtimeTrainingSystem` exists but needs these methods implemented: #### 1. Live Inference Loop ```python def _live_inference_loop(self): """Main loop - predict next candle every second""" # TODO: Implement pass ``` #### 2. Prediction Method ```python def _make_next_candle_prediction(self, timeframe: str) -> Dict: """Predict next candle OHLCV values""" # TODO: Implement using transformer's next_candles output pass ``` #### 3. Training Method ```python def _train_on_timeframe(self, timeframe: str): """Train on resolved predictions""" # TODO: Implement batch training pass ``` #### 4. Prediction Resolution ```python def _resolve_timeframe_predictions(self, timeframe: str): """Compare predicted vs actual candles""" # TODO: Implement pass ``` --- ## ⏳ Phase 3: UI Integration (NEEDS IMPLEMENTATION) ### Dashboard Panel Create `ANNOTATE/web/templates/components/live_training_panel.html`: ```html
Live Inference & Training
Inactive Not Running
``` ### JavaScript Integration Add to `ANNOTATE/web/static/js/main.js`: ```javascript // Live Training Controls let liveTrainingInterval = null; function startLiveTraining() { fetch('/api/live-training/start', { method: 'POST', headers: {'Content-Type': 'application/json'} }) .then(response => response.json()) .then(data => { if (data.success) { updateLiveStatus(true); startLiveStatusPolling(); showNotification('Live training started', 'success'); } else { showNotification('Failed to start: ' + data.error, 'error'); } }); } function stopLiveTraining() { fetch('/api/live-training/stop', { method: 'POST', headers: {'Content-Type': 'application/json'} }) .then(response => response.json()) .then(data => { if (data.success) { updateLiveStatus(false); stopLiveStatusPolling(); showNotification('Live training stopped', 'info'); } }); } function startLiveStatusPolling() { liveTrainingInterval = setInterval(() => { fetch('/api/live-training/status') .then(response => response.json()) .then(data => { if (data.success && data.active) { updateLiveMetrics(data.stats); } }); }, 2000); // Poll every 2 seconds } function stopLiveStatusPolling() { if (liveTrainingInterval) { clearInterval(liveTrainingInterval); liveTrainingInterval = null; } } function updateLiveStatus(active) { const badge = document.getElementById('live-status-badge'); const text = document.getElementById('live-status-text'); const startBtn = document.getElementById('start-live-btn'); const stopBtn = document.getElementById('stop-live-btn'); const metrics = document.getElementById('live-metrics'); if (active) { badge.className = 'badge bg-success'; badge.textContent = 'Active'; text.textContent = 'Running'; startBtn.disabled = true; stopBtn.disabled = false; metrics.style.display = 'block'; } else { badge.className = 'badge bg-secondary'; badge.textContent = 'Inactive'; text.textContent = 'Not Running'; startBtn.disabled = false; stopBtn.disabled = true; metrics.style.display = 'none'; } } function updateLiveMetrics(stats) { document.getElementById('predictions-per-sec').textContent = (stats.predictions_per_sec || 0).toFixed(1); document.getElementById('training-per-min').textContent = (stats.training_batches_per_min || 0).toFixed(0); document.getElementById('accuracy-1m').textContent = ((stats.accuracy || 0) * 100).toFixed(1) + '%'; document.getElementById('gpu-load').textContent = ((stats.gpu_load || 0) * 100).toFixed(0) + '%'; } // Initialize on page load document.addEventListener('DOMContentLoaded', function() { document.getElementById('start-live-btn').addEventListener('click', startLiveTraining); document.getElementById('stop-live-btn').addEventListener('click', stopLiveTraining); // Check initial status fetch('/api/live-training/status') .then(response => response.json()) .then(data => { if (data.success && data.active) { updateLiveStatus(true); startLiveStatusPolling(); } }); }); ``` --- ## Testing ### 1. Test Backend Integration ```python # In Python console or test script from core.orchestrator import TradingOrchestrator from core.data_provider import DataProvider # Initialize data_provider = DataProvider() orchestrator = TradingOrchestrator(data_provider=data_provider) # Check if available print(f"Enhanced training available: {orchestrator.enhanced_training_system is not None}") # Start live training success = orchestrator.start_live_training() print(f"Started: {success}") # Check status active = orchestrator.is_live_training_active() print(f"Active: {active}") # Get stats stats = orchestrator.get_live_training_stats() print(f"Stats: {stats}") # Stop orchestrator.stop_live_training() ``` ### 2. Test API Endpoints ```bash # Start curl -X POST http://localhost:8051/api/live-training/start # Status curl http://localhost:8051/api/live-training/status # Stop curl -X POST http://localhost:8051/api/live-training/stop ``` --- ## Next Steps ### Priority 1: Core Functionality 1. Implement `_live_inference_loop()` in `EnhancedRealtimeTrainingSystem` 2. Implement `_make_next_candle_prediction()` using transformer 3. Implement `_train_on_timeframe()` for batch training 4. Implement `_resolve_timeframe_predictions()` for accuracy tracking ### Priority 2: UI Integration 1. Create live training panel HTML 2. Add JavaScript controls 3. Add CSS styling 4. Integrate into main dashboard ### Priority 3: Testing & Optimization 1. Test with 1s timeframe first 2. Monitor GPU/CPU usage 3. Optimize batch sizes 4. Add error handling 5. Add logging --- ## Summary ### ✅ Completed - Orchestrator integration - Start/stop methods - API endpoints - Basic infrastructure ### ⏳ In Progress - Core prediction loop - Training logic - UI components ### 📋 TODO - Implement prediction methods - Implement training methods - Create UI panel - Add JavaScript controls - Testing and optimization The foundation is in place - now we need to implement the core prediction and training logic!