# Trading System Logging Upgrade ## Overview This upgrade implements a comprehensive logging and metadata management system that addresses the key issues: 1. **Eliminates scattered "No checkpoints found" logs** during runtime 2. **Fast checkpoint metadata access** without loading full models 3. **Centralized inference logging** with database and text file storage 4. **Structured tracking** of model performance and checkpoints ## Key Components ### 1. Database Manager (`utils/database_manager.py`) **Purpose**: SQLite-based storage for structured data **Features**: - Inference records logging with deduplication - Checkpoint metadata storage (separate from model weights) - Model performance tracking - Fast queries without loading model files **Tables**: - `inference_records`: All model predictions with metadata - `checkpoint_metadata`: Checkpoint info without model weights - `model_performance`: Daily aggregated statistics ### 2. Inference Logger (`utils/inference_logger.py`) **Purpose**: Centralized logging for all model inferences **Features**: - Single function call replaces scattered `logger.info()` calls - Automatic feature hashing for deduplication - Memory usage tracking - Processing time measurement - Dual storage (database + text files) **Usage**: ```python from utils.inference_logger import log_model_inference log_model_inference( model_name="dqn_agent", symbol="ETH/USDT", action="BUY", confidence=0.85, probabilities={"BUY": 0.85, "SELL": 0.10, "HOLD": 0.05}, input_features=features_array, processing_time_ms=12.5, checkpoint_id="dqn_agent_20250725_143500" ) ``` ### 3. Text Logger (`utils/text_logger.py`) **Purpose**: Human-readable log files for tracking **Features**: - Separate files for different event types - Clean, tabular format - Automatic cleanup of old entries - Easy to read and grep **Files**: - `logs/inference_records.txt`: All model predictions - `logs/checkpoint_events.txt`: Save/load events - `logs/system_events.txt`: General system events ### 4. Enhanced Checkpoint Manager (`utils/checkpoint_manager.py`) **Purpose**: Improved checkpoint handling with metadata separation **Features**: - Database-backed metadata storage - Fast metadata queries without loading models - Eliminates "No checkpoints found" spam - Backward compatibility with existing code ## Benefits ### 1. Performance Improvements **Before**: Loading full checkpoint just to get metadata ```python # Old way - loads entire model! checkpoint_path, metadata = load_best_checkpoint("dqn_agent") loss = metadata.loss # Expensive operation ``` **After**: Fast metadata access from database ```python # New way - database query only metadata = db_manager.get_best_checkpoint_metadata("dqn_agent") loss = metadata.performance_metrics['loss'] # Fast! ``` ### 2. Cleaner Runtime Logs **Before**: Scattered logs everywhere ``` 2025-07-25 14:34:39,749 - utils.checkpoint_manager - INFO - No checkpoints found for dqn_agent 2025-07-25 14:34:39,754 - utils.checkpoint_manager - INFO - No checkpoints found for enhanced_cnn 2025-07-25 14:34:39,756 - utils.checkpoint_manager - INFO - No checkpoints found for extrema_trainer ``` **After**: Clean, structured logging ``` 2025-07-25 14:34:39 | dqn_agent | ETH/USDT | BUY | conf=0.850 | time= 12.5ms [checkpoint: dqn_agent_20250725_143500] 2025-07-25 14:34:40 | enhanced_cnn | ETH/USDT | HOLD | conf=0.720 | time= 8.2ms [checkpoint: enhanced_cnn_20250725_143501] ``` ### 3. Structured Data Storage **Database Schema**: ```sql -- Fast metadata queries SELECT * FROM checkpoint_metadata WHERE model_name = 'dqn_agent' AND is_active = TRUE; -- Performance analysis SELECT model_name, AVG(confidence), COUNT(*) FROM inference_records WHERE timestamp > datetime('now', '-24 hours') GROUP BY model_name; ``` ### 4. Easy Integration **In Model Code**: ```python # Replace scattered logging # OLD: logger.info(f"DQN prediction: {action} confidence={conf}") # NEW: Centralized logging self.orchestrator.log_model_inference( model_name="dqn_agent", symbol=symbol, action=action, confidence=confidence, probabilities=probs, input_features=features, processing_time_ms=processing_time ) ``` ## Implementation Guide ### 1. Update Model Classes Add inference logging to prediction methods: ```python class DQNAgent: def predict(self, state): start_time = time.time() # Your prediction logic here action = self._predict_action(state) confidence = self._calculate_confidence() processing_time = (time.time() - start_time) * 1000 # Log the inference self.orchestrator.log_model_inference( model_name="dqn_agent", symbol=self.symbol, action=action, confidence=confidence, probabilities=self.action_probabilities, input_features=state, processing_time_ms=processing_time, checkpoint_id=self.current_checkpoint_id ) return action ``` ### 2. Update Checkpoint Saving Use the enhanced checkpoint manager: ```python from utils.checkpoint_manager import save_checkpoint # Save with metadata checkpoint_metadata = save_checkpoint( model=self.model, model_name="dqn_agent", model_type="rl", performance_metrics={"loss": 0.0234, "accuracy": 0.87}, training_metadata={"epochs": 100, "lr": 0.001} ) ``` ### 3. Fast Metadata Access Get checkpoint info without loading models: ```python # Fast metadata access metadata = orchestrator.get_checkpoint_metadata_fast("dqn_agent") if metadata: current_loss = metadata.performance_metrics['loss'] checkpoint_id = metadata.checkpoint_id ``` ## Migration Steps 1. **Install new dependencies** (if any) 2. **Update model classes** to use centralized logging 3. **Replace checkpoint loading** with database queries where possible 4. **Remove scattered logger.info()** calls for inferences 5. **Test with demo script**: `python demo_logging_system.py` ## File Structure ``` utils/ ├── database_manager.py # SQLite database management ├── inference_logger.py # Centralized inference logging ├── text_logger.py # Human-readable text logs └── checkpoint_manager.py # Enhanced checkpoint handling logs/ # Text log files ├── inference_records.txt ├── checkpoint_events.txt └── system_events.txt data/ └── trading_system.db # SQLite database demo_logging_system.py # Demonstration script ``` ## Monitoring and Maintenance ### Daily Tasks - Check `logs/inference_records.txt` for recent activity - Monitor database size: `ls -lh data/trading_system.db` ### Weekly Tasks - Run cleanup: `inference_logger.cleanup_old_logs(days_to_keep=30)` - Check model performance trends in database ### Monthly Tasks - Archive old log files - Analyze model performance statistics - Review checkpoint storage usage ## Troubleshooting ### Common Issues 1. **Database locked**: Multiple processes accessing SQLite - Solution: Use connection timeout and proper context managers 2. **Log files growing too large**: - Solution: Run `text_logger.cleanup_old_logs(max_lines=10000)` 3. **Missing checkpoint metadata**: - Solution: System falls back to file-based approach automatically ### Debug Commands ```python # Check database status db_manager = get_database_manager() checkpoints = db_manager.list_checkpoints("dqn_agent") # Check recent inferences inference_logger = get_inference_logger() stats = inference_logger.get_model_stats("dqn_agent", hours=24) # View text logs text_logger = get_text_logger() recent = text_logger.get_recent_inferences(lines=50) ``` This upgrade provides a solid foundation for tracking model performance, eliminating log spam, and enabling fast metadata access without the overhead of loading full model checkpoints.