# import asyncio
# import json
# import logging
# # Fix PIL import issue that causes plotly JSON serialization errors
# import os
# os.environ['MPLBACKEND'] = 'Agg' # Use non-interactive backend
# try:
# # Try to fix PIL import issue
# import PIL.Image
# # Disable PIL in plotly to prevent circular import issues
# import plotly.io as pio
# pio.kaleido.scope.default_format = "png"
# except ImportError:
# pass
# except Exception:
# # Suppress any PIL-related errors during import
# pass
# from typing import Dict, List, Optional, Tuple, Union
# import websockets
# import plotly.graph_objects as go
# from plotly.subplots import make_subplots
# import dash
# from dash import html, dcc
# from dash.dependencies import Input, Output
# import pandas as pd
# import numpy as np
# from collections import deque
# import time
# from threading import Thread
# import requests
# import os
# from datetime import datetime, timedelta
# import pytz
# import tzlocal
# import threading
# import random
# import dash_bootstrap_components as dbc
# import uuid
# import ta
# from sklearn.preprocessing import MinMaxScaler
# import re
# import psutil
# import gc
# import websocket
# # Import psycopg2 with error handling
# try:
# import psycopg2
# PSYCOPG2_AVAILABLE = True
# except ImportError:
# PSYCOPG2_AVAILABLE = False
# psycopg2 = None
# # TimescaleDB configuration from environment variables
# TIMESCALEDB_ENABLED = os.environ.get('TIMESCALEDB_ENABLED', '1') == '1' and PSYCOPG2_AVAILABLE
# TIMESCALEDB_HOST = os.environ.get('TIMESCALEDB_HOST', '192.168.0.10')
# TIMESCALEDB_PORT = int(os.environ.get('TIMESCALEDB_PORT', '5432'))
# TIMESCALEDB_USER = os.environ.get('TIMESCALEDB_USER', 'postgres')
# TIMESCALEDB_PASSWORD = os.environ.get('TIMESCALEDB_PASSWORD', 'timescaledbpass')
# TIMESCALEDB_DB = os.environ.get('TIMESCALEDB_DB', 'candles')
# class TimescaleDBHandler:
# """Handler for TimescaleDB operations for candle storage and retrieval"""
# def __init__(self):
# """Initialize TimescaleDB connection if enabled"""
# self.enabled = TIMESCALEDB_ENABLED
# self.conn = None
# if not self.enabled:
# if not PSYCOPG2_AVAILABLE:
# print("psycopg2 module not available. TimescaleDB integration disabled.")
# return
# try:
# # Connect to TimescaleDB
# self.conn = psycopg2.connect(
# host=TIMESCALEDB_HOST,
# port=TIMESCALEDB_PORT,
# user=TIMESCALEDB_USER,
# password=TIMESCALEDB_PASSWORD,
# dbname=TIMESCALEDB_DB
# )
# print(f"Connected to TimescaleDB at {TIMESCALEDB_HOST}:{TIMESCALEDB_PORT}")
# # Ensure the candles table exists
# self._ensure_table()
# print("TimescaleDB integration initialized successfully")
# except Exception as e:
# print(f"Error connecting to TimescaleDB: {str(e)}")
# self.enabled = False
# self.conn = None
# def _ensure_table(self):
# """Ensure the candles table exists with TimescaleDB hypertable"""
# if not self.conn:
# return
# try:
# with self.conn.cursor() as cur:
# # Create the candles table if it doesn't exist
# cur.execute('''
# CREATE TABLE IF NOT EXISTS candles (
# symbol TEXT,
# interval TEXT,
# timestamp TIMESTAMPTZ,
# open DOUBLE PRECISION,
# high DOUBLE PRECISION,
# low DOUBLE PRECISION,
# close DOUBLE PRECISION,
# volume DOUBLE PRECISION,
# PRIMARY KEY (symbol, interval, timestamp)
# );
# ''')
# # Check if the table is already a hypertable
# cur.execute('''
# SELECT EXISTS (
# SELECT 1 FROM timescaledb_information.hypertables
# WHERE hypertable_name = 'candles'
# );
# ''')
# is_hypertable = cur.fetchone()[0]
# # Convert to hypertable if not already done
# if not is_hypertable:
# cur.execute('''
# SELECT create_hypertable('candles', 'timestamp',
# if_not_exists => TRUE,
# migrate_data => TRUE
# );
# ''')
# self.conn.commit()
# print("TimescaleDB table structure verified")
# except Exception as e:
# print(f"Error setting up TimescaleDB tables: {str(e)}")
# self.enabled = False
# def upsert_candle(self, symbol, interval, candle):
# """Insert or update a candle in TimescaleDB"""
# if not self.enabled or not self.conn:
# return False
# try:
# with self.conn.cursor() as cur:
# cur.execute('''
# INSERT INTO candles (
# symbol, interval, timestamp,
# open, high, low, close, volume
# )
# VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
# ON CONFLICT (symbol, interval, timestamp)
# DO UPDATE SET
# open = EXCLUDED.open,
# high = EXCLUDED.high,
# low = EXCLUDED.low,
# close = EXCLUDED.close,
# volume = EXCLUDED.volume
# ''', (
# symbol, interval, candle['timestamp'],
# candle['open'], candle['high'], candle['low'],
# candle['close'], candle['volume']
# ))
# self.conn.commit()
# return True
# except Exception as e:
# print(f"Error upserting candle to TimescaleDB: {str(e)}")
# # Try to reconnect on error
# try:
# self.conn = psycopg2.connect(
# host=TIMESCALEDB_HOST,
# port=TIMESCALEDB_PORT,
# user=TIMESCALEDB_USER,
# password=TIMESCALEDB_PASSWORD,
# dbname=TIMESCALEDB_DB
# )
# except:
# pass
# return False
# def fetch_candles(self, symbol, interval, limit=1000):
# """Fetch candles from TimescaleDB"""
# if not self.enabled or not self.conn:
# return []
# try:
# with self.conn.cursor() as cur:
# cur.execute('''
# SELECT timestamp, open, high, low, close, volume
# FROM candles
# WHERE symbol = %s AND interval = %s
# ORDER BY timestamp DESC
# LIMIT %s
# ''', (symbol, interval, limit))
# rows = cur.fetchall()
# # Convert to list of dictionaries (ordered from oldest to newest)
# candles = []
# for row in reversed(rows): # Reverse to get oldest first
# candle = {
# 'timestamp': row[0],
# 'open': row[1],
# 'high': row[2],
# 'low': row[3],
# 'close': row[4],
# 'volume': row[5]
# }
# candles.append(candle)
# return candles
# except Exception as e:
# print(f"Error fetching candles from TimescaleDB: {str(e)}")
# # Try to reconnect on error
# try:
# self.conn = psycopg2.connect(
# host=TIMESCALEDB_HOST,
# port=TIMESCALEDB_PORT,
# user=TIMESCALEDB_USER,
# password=TIMESCALEDB_PASSWORD,
# dbname=TIMESCALEDB_DB
# )
# except:
# pass
# return []
# class BinanceHistoricalData:
# """
# Class for fetching historical price data from Binance.
# """
# def __init__(self):
# self.base_url = "https://api.binance.com/api/v3"
# self.cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cache')
# if not os.path.exists(self.cache_dir):
# os.makedirs(self.cache_dir)
# # Timestamp of last data update
# self.last_update = None
# def get_historical_candles(self, symbol, interval_seconds=3600, limit=1000):
# """
# Fetch historical candles from Binance API.
# Args:
# symbol (str): Trading pair symbol (e.g., "BTC/USDT")
# interval_seconds (int): Timeframe in seconds (e.g., 3600 for 1h)
# limit (int): Number of candles to fetch
# Returns:
# pd.DataFrame: DataFrame with OHLCV data
# """
# # Convert interval_seconds to Binance interval format
# interval_map = {
# 1: "1s",
# 60: "1m",
# 300: "5m",
# 900: "15m",
# 1800: "30m",
# 3600: "1h",
# 14400: "4h",
# 86400: "1d"
# }
# interval = interval_map.get(interval_seconds, "1h")
# # Format symbol for Binance API (remove slash and make uppercase)
# formatted_symbol = symbol.replace("/", "").upper()
# # Check if we have cached data first
# cache_file = self._get_cache_filename(formatted_symbol, interval)
# cached_data = self._load_from_cache(formatted_symbol, interval)
# # If we have cached data that's recent enough, use it
# if cached_data is not None and len(cached_data) >= limit:
# cache_age_minutes = (datetime.now() - self.last_update).total_seconds() / 60 if self.last_update else 60
# if cache_age_minutes < 15: # Only use cache if it's less than 15 minutes old
# logger.info(f"Using cached historical data for {symbol} ({interval})")
# return cached_data
# try:
# # Build URL for klines endpoint
# url = f"{self.base_url}/klines"
# params = {
# "symbol": formatted_symbol,
# "interval": interval,
# "limit": limit
# }
# # Make the request
# response = requests.get(url, params=params)
# response.raise_for_status()
# # Parse the response
# data = response.json()
# # Create dataframe
# df = pd.DataFrame(data, columns=[
# "timestamp", "open", "high", "low", "close", "volume",
# "close_time", "quote_asset_volume", "number_of_trades",
# "taker_buy_base_asset_volume", "taker_buy_quote_asset_volume", "ignore"
# ])
# # Convert timestamp to datetime
# df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
# # Convert price columns to float
# for col in ["open", "high", "low", "close", "volume"]:
# df[col] = df[col].astype(float)
# # Sort by timestamp
# df = df.sort_values("timestamp")
# # Save to cache for future use
# self._save_to_cache(df, formatted_symbol, interval)
# self.last_update = datetime.now()
# logger.info(f"Fetched {len(df)} candles for {symbol} ({interval})")
# return df
# except Exception as e:
# logger.error(f"Error fetching historical data from Binance: {str(e)}")
# # Return cached data if we have it, even if it's not enough
# if cached_data is not None:
# logger.warning(f"Using cached data instead (may be incomplete)")
# return cached_data
# # Return empty dataframe on error
# return pd.DataFrame()
# def _get_cache_filename(self, symbol, interval):
# """Get filename for cache file"""
# return os.path.join(self.cache_dir, f"{symbol}_{interval}_candles.csv")
# def _load_from_cache(self, symbol, interval):
# """Load candles from cache file"""
# try:
# cache_file = self._get_cache_filename(symbol, interval)
# if os.path.exists(cache_file):
# # For 1s interval, check if the cache is recent (less than 10 minutes old)
# if interval == "1s" or interval == 1:
# file_mod_time = datetime.fromtimestamp(os.path.getmtime(cache_file))
# time_diff = (datetime.now() - file_mod_time).total_seconds() / 60
# if time_diff > 10:
# logger.info("1s cache is older than 10 minutes, skipping load")
# return None
# logger.info(f"Using recent 1s cache (age: {time_diff:.1f} minutes)")
# df = pd.read_csv(cache_file)
# df["timestamp"] = pd.to_datetime(df["timestamp"])
# logger.info(f"Loaded {len(df)} candles from cache: {cache_file}")
# return df
# except Exception as e:
# logger.error(f"Error loading cached data: {str(e)}")
# return None
# def _save_to_cache(self, df, symbol, interval):
# """Save candles to cache file"""
# try:
# cache_file = self._get_cache_filename(symbol, interval)
# df.to_csv(cache_file, index=False)
# logger.info(f"Saved {len(df)} candles to cache: {cache_file}")
# return True
# except Exception as e:
# logger.error(f"Error saving to cache: {str(e)}")
# return False
# def get_recent_trades(self, symbol, limit=1000):
# """Get recent trades for a symbol"""
# formatted_symbol = symbol.replace("/", "")
# try:
# url = f"{self.base_url}/trades"
# params = {
# "symbol": formatted_symbol,
# "limit": limit
# }
# response = requests.get(url, params=params)
# response.raise_for_status()
# data = response.json()
# # Create dataframe
# df = pd.DataFrame(data)
# df["time"] = pd.to_datetime(df["time"], unit="ms")
# df["price"] = df["price"].astype(float)
# df["qty"] = df["qty"].astype(float)
# return df
# except Exception as e:
# logger.error(f"Error fetching recent trades: {str(e)}")
# return pd.DataFrame()
# class MultiTimeframeDataInterface:
# """
# Enhanced Data Interface supporting:
# - Multiple trading pairs
# - Multiple timeframes per pair (1s, 1m, 1h, 1d + custom)
# - Technical indicators
# - Cross-timeframe normalization
# - Real-time data updates
# """
# def __init__(self, symbol=None, timeframes=None, data_dir="data"):
# """
# Initialize the data interface.
# Args:
# symbol (str): Trading pair symbol (e.g., "BTC/USDT")
# timeframes (list): List of timeframes to use (e.g., ['1m', '5m', '1h', '4h', '1d'])
# data_dir (str): Directory to store/load datasets
# """
# self.symbol = symbol
# self.timeframes = timeframes or ['1h', '4h', '1d']
# self.data_dir = data_dir
# self.scalers = {} # Store scalers for each timeframe
# # Initialize the historical data fetcher
# self.historical_data = BinanceHistoricalData()
# # Create data directory if it doesn't exist
# os.makedirs(self.data_dir, exist_ok=True)
# # Initialize empty dataframes for each timeframe
# self.dataframes = {tf: None for tf in self.timeframes}
# # Store timestamps of last updates per timeframe
# self.last_updates = {tf: None for tf in self.timeframes}
# # Timeframe mapping (string to seconds)
# self.timeframe_to_seconds = {
# '1s': 1,
# '1m': 60,
# '5m': 300,
# '15m': 900,
# '30m': 1800,
# '1h': 3600,
# '4h': 14400,
# '1d': 86400
# }
# logger.info(f"MultiTimeframeDataInterface initialized for {symbol} with timeframes {timeframes}")
# def get_data(self, timeframe='1h', n_candles=1000, refresh=False, add_indicators=True):
# """
# Fetch historical price data for a given timeframe with optional indicators.
# Args:
# timeframe (str): Timeframe to fetch data for
# n_candles (int): Number of candles to fetch
# refresh (bool): Force refresh of the data
# add_indicators (bool): Whether to add technical indicators
# Returns:
# pd.DataFrame: DataFrame with OHLCV data and indicators
# """
# # Check if we need to refresh
# current_time = datetime.now()
# if (not refresh and
# self.dataframes[timeframe] is not None and
# self.last_updates[timeframe] is not None and
# (current_time - self.last_updates[timeframe]).total_seconds() < 60):
# #logger.info(f"Using cached data for {self.symbol} {timeframe}")
# return self.dataframes[timeframe]
# interval_seconds = self.timeframe_to_seconds.get(timeframe, 3600)
# # Fetch data
# df = self.historical_data.get_historical_candles(
# symbol=self.symbol,
# interval_seconds=interval_seconds,
# limit=n_candles
# )
# if df is None or df.empty:
# logger.error(f"No data available for {self.symbol} {timeframe}")
# return None
# # Add indicators if requested
# if add_indicators:
# df = self.add_indicators(df)
# # Store in cache
# self.dataframes[timeframe] = df
# self.last_updates[timeframe] = current_time
# logger.info(f"Fetched and processed {len(df)} candles for {self.symbol} {timeframe}")
# return df
# def add_indicators(self, df):
# """
# Add comprehensive technical indicators to the dataframe.
# Args:
# df (pd.DataFrame): DataFrame with OHLCV data
# Returns:
# pd.DataFrame: DataFrame with added technical indicators
# """
# # Make a copy to avoid modifying the original
# df_copy = df.copy()
# # Basic price indicators
# df_copy['returns'] = df_copy['close'].pct_change()
# df_copy['log_returns'] = np.log(df_copy['close'] / df_copy['close'].shift(1))
# # Moving Averages
# df_copy['sma_7'] = ta.trend.sma_indicator(df_copy['close'], window=7)
# df_copy['sma_25'] = ta.trend.sma_indicator(df_copy['close'], window=25)
# df_copy['sma_99'] = ta.trend.sma_indicator(df_copy['close'], window=99)
# df_copy['ema_9'] = ta.trend.ema_indicator(df_copy['close'], window=9)
# df_copy['ema_21'] = ta.trend.ema_indicator(df_copy['close'], window=21)
# # MACD
# macd = ta.trend.MACD(df_copy['close'])
# df_copy['macd'] = macd.macd()
# df_copy['macd_signal'] = macd.macd_signal()
# df_copy['macd_diff'] = macd.macd_diff()
# # RSI
# df_copy['rsi'] = ta.momentum.rsi(df_copy['close'], window=14)
# # Bollinger Bands
# bollinger = ta.volatility.BollingerBands(df_copy['close'])
# df_copy['bb_high'] = bollinger.bollinger_hband()
# df_copy['bb_low'] = bollinger.bollinger_lband()
# df_copy['bb_pct'] = bollinger.bollinger_pband()
# # Stochastic Oscillator
# stoch = ta.momentum.StochasticOscillator(df_copy['high'], df_copy['low'], df_copy['close'])
# df_copy['stoch_k'] = stoch.stoch()
# df_copy['stoch_d'] = stoch.stoch_signal()
# # ATR - Average True Range
# df_copy['atr'] = ta.volatility.average_true_range(df_copy['high'], df_copy['low'], df_copy['close'], window=14)
# # Money Flow Index
# df_copy['mfi'] = ta.volume.money_flow_index(df_copy['high'], df_copy['low'], df_copy['close'], df_copy['volume'], window=14)
# # OBV - On-Balance Volume
# df_copy['obv'] = ta.volume.on_balance_volume(df_copy['close'], df_copy['volume'])
# # Ichimoku Cloud
# ichimoku = ta.trend.IchimokuIndicator(df_copy['high'], df_copy['low'])
# df_copy['ichimoku_a'] = ichimoku.ichimoku_a()
# df_copy['ichimoku_b'] = ichimoku.ichimoku_b()
# df_copy['ichimoku_base'] = ichimoku.ichimoku_base_line()
# df_copy['ichimoku_conv'] = ichimoku.ichimoku_conversion_line()
# # ADX - Average Directional Index
# adx = ta.trend.ADXIndicator(df_copy['high'], df_copy['low'], df_copy['close'])
# df_copy['adx'] = adx.adx()
# df_copy['adx_pos'] = adx.adx_pos()
# df_copy['adx_neg'] = adx.adx_neg()
# # VWAP - Volume Weighted Average Price (intraday)
# # Custom calculation since TA library doesn't include VWAP
# df_copy['vwap'] = (df_copy['volume'] * (df_copy['high'] + df_copy['low'] + df_copy['close']) / 3).cumsum() / df_copy['volume'].cumsum()
# # Fill NaN values
# df_copy = df_copy.fillna(method='bfill').fillna(0)
# return df_copy
# def get_multi_timeframe_data(self, timeframes=None, n_candles=1000, refresh=False, add_indicators=True):
# """
# Fetch data for multiple timeframes.
# Args:
# timeframes (list): List of timeframes to fetch
# n_candles (int): Number of candles to fetch for each timeframe
# refresh (bool): Force refresh of the data
# add_indicators (bool): Whether to add technical indicators
# Returns:
# dict: Dictionary of dataframes indexed by timeframe
# """
# if timeframes is None:
# timeframes = self.timeframes
# result = {}
# for tf in timeframes:
# # For higher timeframes, we need fewer candles
# tf_candles = n_candles
# if tf == '4h':
# tf_candles = max(250, n_candles // 4)
# elif tf == '1d':
# tf_candles = max(100, n_candles // 24)
# df = self.get_data(timeframe=tf, n_candles=tf_candles, refresh=refresh, add_indicators=add_indicators)
# if df is not None and not df.empty:
# result[tf] = df
# return result
# def prepare_training_data(self, window_size=20, train_ratio=0.8, refresh=False):
# """
# Prepare training data from multiple timeframes.
# Args:
# window_size (int): Size of the sliding window
# train_ratio (float): Ratio of data to use for training
# refresh (bool): Whether to refresh the data
# Returns:
# tuple: (X_train, y_train, X_val, y_val, train_prices, val_prices)
# """
# # Get data for all timeframes
# data_dict = self.get_multi_timeframe_data(refresh=refresh)
# if not data_dict:
# logger.error("Failed to fetch data for any timeframe")
# return None, None, None, None, None, None
# # Align all dataframes by timestamp
# all_dfs = list(data_dict.values())
# min_date = max([df['timestamp'].min() for df in all_dfs])
# max_date = min([df['timestamp'].max() for df in all_dfs])
# aligned_dfs = {}
# for tf, df in data_dict.items():
# aligned_df = df[(df['timestamp'] >= min_date) & (df['timestamp'] <= max_date)]
# aligned_dfs[tf] = aligned_df
# # Choose the lowest timeframe as the reference for time alignment
# reference_tf = min(self.timeframes, key=lambda x: self.timeframe_to_seconds.get(x, 3600))
# reference_df = aligned_dfs[reference_tf]
# # Create sliding windows for each timeframe
# X_dict = {}
# for tf, df in aligned_dfs.items():
# # Drop timestamp and create numeric features
# features = df.drop('timestamp', axis=1).values
# # Ensure the feature array is 3D: [samples, window, features]
# X = np.array([features[i:i+window_size] for i in range(len(features)-window_size)])
# X_dict[tf] = X
# # Create target labels based on future price movements
# reference_prices = reference_df['close'].values
# future_prices = reference_prices[window_size:]
# current_prices = reference_prices[window_size-1:-1]
# # Calculate returns
# returns = (future_prices - current_prices) / current_prices
# # Create labels: 0=SELL, 1=HOLD, 2=BUY
# threshold = 0.0005 # 0.05% threshold
# y = np.zeros(len(returns), dtype=int)
# y[returns > threshold] = 2 # BUY
# y[returns < -threshold] = 0 # SELL
# y[(returns >= -threshold) & (returns <= threshold)] = 1 # HOLD
# # Split into training and validation sets
# split_idx = int(len(y) * train_ratio)
# X_train_dict = {tf: X[:split_idx] for tf, X in X_dict.items()}
# X_val_dict = {tf: X[split_idx:] for tf, X in X_dict.items()}
# y_train = y[:split_idx]
# y_val = y[split_idx:]
# train_prices = reference_prices[window_size-1:window_size-1+split_idx]
# val_prices = reference_prices[window_size-1+split_idx:window_size-1+len(y)]
# logger.info(f"Prepared training data - Train: {len(y_train)}, Val: {len(y_val)}")
# return X_train_dict, y_train, X_val_dict, y_val, train_prices, val_prices
# def normalize_data(self, data_dict, fit=True):
# """
# Normalize data across all timeframes.
# Args:
# data_dict (dict): Dictionary of data arrays by timeframe
# fit (bool): Whether to fit new scalers or use existing ones
# Returns:
# dict: Dictionary of normalized data arrays
# """
# result = {}
# for tf, data in data_dict.items():
# # For 3D data [samples, window, features]
# if len(data.shape) == 3:
# samples, window, features = data.shape
# reshaped = data.reshape(-1, features)
# if fit or tf not in self.scalers:
# self.scalers[tf] = MinMaxScaler()
# normalized = self.scalers[tf].fit_transform(reshaped)
# else:
# normalized = self.scalers[tf].transform(reshaped)
# result[tf] = normalized.reshape(samples, window, features)
# # For 2D data [samples, features]
# elif len(data.shape) == 2:
# if fit or tf not in self.scalers:
# self.scalers[tf] = MinMaxScaler()
# result[tf] = self.scalers[tf].fit_transform(data)
# else:
# result[tf] = self.scalers[tf].transform(data)
# return result
# def get_realtime_features(self, timeframes=None, window_size=20):
# """
# Get the most recent data for real-time prediction.
# Args:
# timeframes (list): List of timeframes to use
# window_size (int): Size of the sliding window
# Returns:
# dict: Dictionary of feature arrays for the latest window
# """
# if timeframes is None:
# timeframes = self.timeframes
# # Get fresh data
# data_dict = self.get_multi_timeframe_data(timeframes=timeframes, refresh=True)
# result = {}
# for tf, df in data_dict.items():
# if len(df) < window_size:
# logger.warning(f"Not enough data for {tf} (need {window_size}, got {len(df)})")
# continue
# # Get the latest window
# latest_data = df.tail(window_size).drop('timestamp', axis=1).values
# # Add extra dimension to match model input shape [1, window_size, features]
# result[tf] = latest_data.reshape(1, window_size, -1)
# # Apply normalization using existing scalers
# if self.scalers:
# result = self.normalize_data(result, fit=False)
# return result
# def calculate_pnl(self, predictions, prices, position_size=1.0, fee_rate=0.0002):
# """
# Calculate PnL and win rate from predictions.
# Args:
# predictions (np.ndarray): Array of predicted actions (0=SELL, 1=HOLD, 2=BUY)
# prices (np.ndarray): Array of prices
# position_size (float): Size of each position
# fee_rate (float): Trading fee rate (default: 0.0002 for 0.02% per trade)
# Returns:
# tuple: (total_pnl, win_rate, trades)
# """
# if len(predictions) < 2 or len(prices) < 2:
# return 0.0, 0.0, []
# # Ensure arrays are the same length
# min_len = min(len(predictions), len(prices)-1)
# actions = predictions[:min_len]
# pnl = 0.0
# wins = 0
# trades = []
# for i in range(min_len):
# current_price = prices[i]
# next_price = prices[i+1]
# action = actions[i]
# # Skip HOLD actions
# if action == 1:
# continue
# price_change = (next_price - current_price) / current_price
# if action == 2: # BUY
# # Calculate raw PnL
# raw_pnl = price_change * position_size
# # Calculate fees (entry and exit)
# entry_fee = position_size * fee_rate
# exit_fee = position_size * (1 + price_change) * fee_rate
# total_fees = entry_fee + exit_fee
# # Net PnL after fees
# trade_pnl = raw_pnl - total_fees
# trade_type = 'BUY'
# is_win = trade_pnl > 0
# elif action == 0: # SELL
# # Calculate raw PnL
# raw_pnl = -price_change * position_size
# # Calculate fees (entry and exit)
# entry_fee = position_size * fee_rate
# exit_fee = position_size * (1 - price_change) * fee_rate
# total_fees = entry_fee + exit_fee
# # Net PnL after fees
# trade_pnl = raw_pnl - total_fees
# trade_type = 'SELL'
# is_win = trade_pnl > 0
# else:
# continue
# pnl += trade_pnl
# wins += int(is_win)
# trades.append({
# 'type': trade_type,
# 'entry': float(current_price), # Ensure serializable
# 'exit': float(next_price),
# 'raw_pnl': float(raw_pnl),
# 'fees': float(total_fees),
# 'pnl': float(trade_pnl),
# 'win': bool(is_win),
# 'timestamp': datetime.now().isoformat() # Add timestamp
# })
# win_rate = wins / len(trades) if trades else 0.0
# return float(pnl), float(win_rate), trades
# # Configure logging with more detailed format
# logging.basicConfig(
# level=logging.INFO, # Changed to DEBUG for more detailed logs
# format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
# handlers=[
# logging.StreamHandler(),
# logging.FileHandler('realtime_chart.log')
# ]
# )
# logger = logging.getLogger(__name__)
# # Neural Network integration (conditional import)
# NN_ENABLED = os.environ.get('ENABLE_NN_MODELS', '0') == '1'
# nn_orchestrator = None
# nn_inference_thread = None
# if NN_ENABLED:
# try:
# import sys
# # Add project root to sys.path if needed
# project_root = os.path.dirname(os.path.abspath(__file__))
# if project_root not in sys.path:
# sys.path.append(project_root)
# from NN.main import NeuralNetworkOrchestrator
# logger.info("Neural Network module enabled")
# except ImportError as e:
# logger.warning(f"Failed to import Neural Network module, disabling NN features: {str(e)}")
# NN_ENABLED = False
# # NN utility functions
# def setup_neural_network():
# """Initialize the neural network components if enabled"""
# global nn_orchestrator, NN_ENABLED
# if not NN_ENABLED:
# return False
# try:
# # Get configuration from environment variables or use defaults
# symbol = os.environ.get('NN_SYMBOL', 'ETH/USDT')
# timeframes = os.environ.get('NN_TIMEFRAMES', '1m,5m,1h,4h,1d').split(',')
# output_size = int(os.environ.get('NN_OUTPUT_SIZE', '3')) # 3 for BUY/HOLD/SELL
# # Configure the orchestrator
# config = {
# 'symbol': symbol,
# 'timeframes': timeframes,
# 'window_size': int(os.environ.get('NN_WINDOW_SIZE', '20')),
# 'n_features': 5, # OHLCV
# 'output_size': output_size,
# 'model_dir': 'NN/models/saved',
# 'data_dir': 'NN/data'
# }
# # Initialize the orchestrator
# logger.info(f"Initializing Neural Network Orchestrator with config: {config}")
# nn_orchestrator = NeuralNetworkOrchestrator(config)
# # Load the model
# model_loaded = nn_orchestrator.load_model()
# if not model_loaded:
# logger.warning("Failed to load neural network model. Using untrained model.")
# return model_loaded
# except Exception as e:
# logger.error(f"Error setting up neural network: {str(e)}")
# NN_ENABLED = False
# return False
# def start_nn_inference_thread(interval_seconds):
# """Start a background thread to periodically run inference with the neural network"""
# global nn_inference_thread
# if not NN_ENABLED or nn_orchestrator is None:
# logger.warning("Cannot start inference thread - Neural Network not enabled or initialized")
# return False
# def inference_worker():
# """Worker function for the inference thread"""
# model_type = os.environ.get('NN_MODEL_TYPE', 'cnn')
# timeframe = os.environ.get('NN_TIMEFRAME', '1h')
# logger.info(f"Starting neural network inference thread with {interval_seconds}s interval")
# logger.info(f"Using model type: {model_type}, timeframe: {timeframe}")
# # Wait a bit for charts to initialize
# time.sleep(5)
# # Track active charts
# active_charts = []
# while True:
# try:
# # Find active charts if we don't have them yet
# if not active_charts and 'charts' in globals():
# active_charts = globals()['charts']
# logger.info(f"Found {len(active_charts)} active charts for NN signals")
# # Run inference
# result = nn_orchestrator.run_inference_pipeline(
# model_type=model_type,
# timeframe=timeframe
# )
# if result:
# # Log the result
# logger.info(f"Neural network inference result: {result}")
# # Add signal to charts
# if active_charts:
# try:
# if 'action' in result:
# action = result['action']
# timestamp = datetime.fromisoformat(result['timestamp'].replace('Z', '+00:00'))
# # Get probability if available
# probability = None
# if 'probability' in result:
# probability = result['probability']
# elif 'probabilities' in result:
# probability = result['probabilities'].get(action, None)
# # Add signal to each chart
# for chart in active_charts:
# if hasattr(chart, 'add_nn_signal'):
# chart.add_nn_signal(action, timestamp, probability)
# except Exception as e:
# logger.error(f"Error adding NN signal to chart: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# # Sleep for the interval
# time.sleep(interval_seconds)
# except Exception as e:
# logger.error(f"Error in inference thread: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# time.sleep(5) # Wait a bit before retrying
# # Create and start the thread
# nn_inference_thread = threading.Thread(target=inference_worker, daemon=True)
# nn_inference_thread.start()
# return True
# # Try to get local timezone, default to Sofia/EET if not available
# try:
# local_timezone = tzlocal.get_localzone()
# # Get timezone name safely
# try:
# tz_name = str(local_timezone)
# # Handle case where it might be zoneinfo.ZoneInfo object instead of pytz timezone
# if hasattr(local_timezone, 'zone'):
# tz_name = local_timezone.zone
# elif hasattr(local_timezone, 'key'):
# tz_name = local_timezone.key
# else:
# tz_name = str(local_timezone)
# except:
# tz_name = "Local"
# logger.info(f"Detected local timezone: {local_timezone} ({tz_name})")
# except Exception as e:
# logger.warning(f"Could not detect local timezone: {str(e)}. Defaulting to Sofia/EET")
# local_timezone = pytz.timezone('Europe/Sofia')
# tz_name = "Europe/Sofia"
# def convert_to_local_time(timestamp):
# """Convert timestamp to local timezone"""
# try:
# if isinstance(timestamp, pd.Timestamp):
# dt = timestamp.to_pydatetime()
# elif isinstance(timestamp, np.datetime64):
# dt = pd.Timestamp(timestamp).to_pydatetime()
# elif isinstance(timestamp, str):
# dt = pd.to_datetime(timestamp).to_pydatetime()
# else:
# dt = timestamp
# # If datetime is naive (no timezone), assume it's UTC
# if dt.tzinfo is None:
# dt = dt.replace(tzinfo=pytz.UTC)
# # Convert to local timezone
# local_dt = dt.astimezone(local_timezone)
# return local_dt
# except Exception as e:
# logger.error(f"Error converting timestamp to local time: {str(e)}")
# return timestamp
# # Initialize TimescaleDB handler - only once, at module level
# timescaledb_handler = TimescaleDBHandler() if TIMESCALEDB_ENABLED else None
# class TickStorage:
# def __init__(self, symbol, timeframes=None, use_timescaledb=False):
# """Initialize the tick storage for a specific symbol"""
# self.symbol = symbol
# self.timeframes = timeframes or ["1s", "5m", "15m", "1h", "4h", "1d"]
# self.ticks = []
# self.candles = {tf: [] for tf in self.timeframes}
# self.current_candle = {tf: None for tf in self.timeframes}
# self.last_candle_timestamp = {tf: None for tf in self.timeframes}
# self.cache_dir = os.path.join(os.getcwd(), "cache", symbol.replace("/", ""))
# self.cache_path = os.path.join(self.cache_dir, f"{symbol.replace('/', '')}_ticks.json") # Add missing cache_path
# self.use_timescaledb = use_timescaledb
# self.max_ticks = 10000 # Maximum number of ticks to store in memory
# # Create cache directory if it doesn't exist
# os.makedirs(self.cache_dir, exist_ok=True)
# logger.info(f"Creating new tick storage for {symbol} with timeframes {self.timeframes}")
# logger.info(f"Cache directory: {self.cache_dir}")
# logger.info(f"Cache file: {self.cache_path}")
# if use_timescaledb:
# print(f"TickStorage: TimescaleDB integration is ENABLED for {symbol}")
# else:
# logger.info(f"TickStorage: TimescaleDB integration is DISABLED for {symbol}")
# def _save_to_cache(self):
# """Save ticks to a cache file"""
# try:
# # Only save the latest 5000 ticks to avoid giant files
# ticks_to_save = self.ticks[-5000:] if len(self.ticks) > 5000 else self.ticks
# # Convert pandas Timestamps to ISO strings for JSON serialization
# serializable_ticks = []
# for tick in ticks_to_save:
# serializable_tick = tick.copy()
# if isinstance(tick['timestamp'], pd.Timestamp):
# serializable_tick['timestamp'] = tick['timestamp'].isoformat()
# elif hasattr(tick['timestamp'], 'isoformat'):
# serializable_tick['timestamp'] = tick['timestamp'].isoformat()
# else:
# # Keep as is if it's already a string or number
# serializable_tick['timestamp'] = tick['timestamp']
# serializable_ticks.append(serializable_tick)
# with open(self.cache_path, 'w') as f:
# json.dump(serializable_ticks, f)
# logger.debug(f"Saved {len(serializable_ticks)} ticks to cache")
# except Exception as e:
# logger.error(f"Error saving ticks to cache: {e}")
# def _load_from_cache(self):
# """Load ticks from cache if available"""
# if os.path.exists(self.cache_path):
# try:
# # Check if the cache file is recent (< 10 minutes old)
# cache_age = time.time() - os.path.getmtime(self.cache_path)
# if cache_age > 600: # 10 minutes in seconds
# logger.warning(f"Cache file is {cache_age:.1f} seconds old (>10 min). Not using it.")
# return False
# with open(self.cache_path, 'r') as f:
# cached_ticks = json.load(f)
# if cached_ticks:
# # Convert ISO strings back to pandas Timestamps
# processed_ticks = []
# for tick in cached_ticks:
# processed_tick = tick.copy()
# if isinstance(tick['timestamp'], str):
# try:
# processed_tick['timestamp'] = pd.Timestamp(tick['timestamp'])
# except:
# # If parsing fails, use current time
# processed_tick['timestamp'] = pd.Timestamp.now()
# else:
# # Convert to pandas Timestamp if it's a number (milliseconds)
# processed_tick['timestamp'] = pd.Timestamp(tick['timestamp'], unit='ms')
# processed_ticks.append(processed_tick)
# self.ticks = processed_ticks
# logger.info(f"Loaded {len(cached_ticks)} ticks from cache")
# return True
# except Exception as e:
# logger.error(f"Error loading ticks from cache: {e}")
# return False
# def add_tick(self, tick=None, price=None, volume=None, timestamp=None):
# """
# Add a tick to the storage and update candles for all timeframes
# Args:
# tick (dict, optional): A tick object containing price, quantity and timestamp
# price (float, optional): Price of the tick (used in older interface)
# volume (float, optional): Volume of the tick (used in older interface)
# timestamp (datetime, optional): Timestamp of the tick (used in older interface)
# """
# # Handle tick as a dict or separate parameters for backward compatibility
# if tick is not None and isinstance(tick, dict):
# # Using the new interface with a tick object
# price = tick['price']
# volume = tick.get('quantity', 0)
# timestamp = tick['timestamp']
# elif price is not None:
# # Using the old interface with separate parameters
# # Convert datetime to pd.Timestamp if needed
# if timestamp is not None and not isinstance(timestamp, pd.Timestamp):
# timestamp = pd.Timestamp(timestamp)
# else:
# logger.error("Invalid tick: must provide either a tick dict or price")
# return
# # Ensure timestamp is a pandas Timestamp
# if not isinstance(timestamp, pd.Timestamp):
# if isinstance(timestamp, (int, float)):
# # Assume it's milliseconds
# timestamp = pd.Timestamp(timestamp, unit='ms')
# else:
# # Try to parse as string or datetime
# timestamp = pd.Timestamp(timestamp)
# # Create tick object with consistent pandas Timestamp
# tick_obj = {
# 'price': float(price),
# 'quantity': float(volume) if volume is not None else 0.0,
# 'timestamp': timestamp
# }
# # Add to the list of ticks
# self.ticks.append(tick_obj)
# # Limit the number of ticks to avoid memory issues
# if len(self.ticks) > self.max_ticks:
# self.ticks = self.ticks[-self.max_ticks:]
# # Update candles for all timeframes
# for timeframe in self.timeframes:
# if timeframe == "1s":
# self._update_1s_candle(tick_obj)
# else:
# self._update_candles_for_timeframe(timeframe, tick_obj)
# # Cache to disk periodically
# self._try_cache_ticks()
# def _update_1s_candle(self, tick):
# """Update the 1-second candle with the new tick"""
# # Get timestamp for the start of the current second
# tick_timestamp = tick['timestamp']
# candle_timestamp = pd.Timestamp(int(tick_timestamp.timestamp() // 1 * 1_000_000_000))
# # Check if we need to create a new candle
# if self.current_candle["1s"] is None or self.current_candle["1s"]["timestamp"] != candle_timestamp:
# # If we have a current candle, finalize it and add to candles list
# if self.current_candle["1s"] is not None:
# # Add the completed candle to the list
# self.candles["1s"].append(self.current_candle["1s"])
# # Limit the number of stored candles to prevent memory issues
# if len(self.candles["1s"]) > 3600: # Keep last hour of 1s candles
# self.candles["1s"] = self.candles["1s"][-3600:]
# # Store in TimescaleDB if enabled
# if self.use_timescaledb:
# timescaledb_handler.upsert_candle(
# self.symbol, "1s", self.current_candle["1s"]
# )
# # Log completed candle for debugging
# logger.debug(f"Completed 1s candle: {self.current_candle['1s']['timestamp']} - Close: {self.current_candle['1s']['close']}")
# # Create a new candle
# self.current_candle["1s"] = {
# "timestamp": candle_timestamp,
# "open": float(tick["price"]),
# "high": float(tick["price"]),
# "low": float(tick["price"]),
# "close": float(tick["price"]),
# "volume": float(tick["quantity"]) if "quantity" in tick else 0.0
# }
# # Update last candle timestamp
# self.last_candle_timestamp["1s"] = candle_timestamp
# logger.debug(f"Created new 1s candle at {candle_timestamp}")
# else:
# # Update the current candle
# current = self.current_candle["1s"]
# price = float(tick["price"])
# # Update high and low
# if price > current["high"]:
# current["high"] = price
# if price < current["low"]:
# current["low"] = price
# # Update close price and add volume
# current["close"] = price
# current["volume"] += float(tick["quantity"]) if "quantity" in tick else 0.0
# def _update_candles_for_timeframe(self, timeframe, tick):
# """Update candles for a specific timeframe"""
# # Skip 1s as it's handled separately
# if timeframe == "1s":
# return
# # Convert timeframe to seconds
# timeframe_seconds = self._timeframe_to_seconds(timeframe)
# # Get the timestamp truncated to the timeframe interval
# # e.g., for a 5m candle, the timestamp should be truncated to the nearest 5-minute mark
# # Convert timestamp to datetime if it's not already
# tick_timestamp = tick['timestamp']
# if isinstance(tick_timestamp, pd.Timestamp):
# ts = tick_timestamp
# else:
# ts = pd.Timestamp(tick_timestamp)
# # Truncate timestamp to nearest timeframe interval
# timestamp = pd.Timestamp(
# int(ts.timestamp() // timeframe_seconds * timeframe_seconds * 1_000_000_000)
# )
# # Get the current candle for this timeframe
# current_candle = self.current_candle[timeframe]
# # If we have no current candle or the timestamp is different (new candle)
# if current_candle is None or current_candle['timestamp'] != timestamp:
# # If we have a current candle, add it to the candles list
# if current_candle:
# self.candles[timeframe].append(current_candle)
# # Save to TimescaleDB if enabled
# if self.use_timescaledb:
# timescaledb_handler.upsert_candle(self.symbol, timeframe, current_candle)
# # Create a new candle
# current_candle = {
# 'timestamp': timestamp,
# 'open': tick['price'],
# 'high': tick['price'],
# 'low': tick['price'],
# 'close': tick['price'],
# 'volume': tick.get('quantity', 0)
# }
# # Update current candle
# self.current_candle[timeframe] = current_candle
# self.last_candle_timestamp[timeframe] = timestamp
# else:
# # Update existing candle
# current_candle['high'] = max(current_candle['high'], tick['price'])
# current_candle['low'] = min(current_candle['low'], tick['price'])
# current_candle['close'] = tick['price']
# current_candle['volume'] += tick.get('quantity', 0)
# # Limit the number of candles to avoid memory issues
# max_candles = 1000
# if len(self.candles[timeframe]) > max_candles:
# self.candles[timeframe] = self.candles[timeframe][-max_candles:]
# def _timeframe_to_seconds(self, timeframe):
# """Convert a timeframe string (e.g., '1m', '1h') to seconds"""
# if timeframe == "1s":
# return 1
# try:
# # Extract the number and unit
# match = re.match(r'(\d+)([smhdw])', timeframe)
# if not match:
# return None
# num, unit = match.groups()
# num = int(num)
# # Convert to seconds
# if unit == 's':
# return num
# elif unit == 'm':
# return num * 60
# elif unit == 'h':
# return num * 3600
# elif unit == 'd':
# return num * 86400
# elif unit == 'w':
# return num * 604800
# return None
# except:
# return None
# def get_candles(self, timeframe, limit=None):
# """Get candles for a given timeframe"""
# if timeframe in self.candles:
# candles = self.candles[timeframe]
# # Add the current candle if it exists and isn't None
# if timeframe in self.current_candle and self.current_candle[timeframe] is not None:
# # Make a copy of the current candle
# current_candle_copy = self.current_candle[timeframe].copy()
# # Check if the current candle is newer than the last candle in the list
# if not candles or current_candle_copy["timestamp"] > candles[-1]["timestamp"]:
# candles = candles + [current_candle_copy]
# # Apply limit if provided
# if limit and len(candles) > limit:
# return candles[-limit:]
# return candles
# return []
# def get_last_price(self):
# """Get the last known price"""
# if self.ticks:
# return float(self.ticks[-1]["price"])
# return None
# def load_historical_data(self, symbol, limit=1000):
# """Load historical data for all timeframes"""
# logger.info(f"Starting historical data load for {symbol} with limit {limit}")
# # Clear existing data
# self.ticks = []
# self.candles = {tf: [] for tf in self.timeframes}
# self.current_candle = {tf: None for tf in self.timeframes}
# # Try to load ticks from cache first
# logger.info("Attempting to load from cache...")
# cache_loaded = self._load_from_cache()
# if cache_loaded:
# logger.info("Successfully loaded data from cache")
# else:
# logger.info("No valid cache data found")
# # Check if we have TimescaleDB enabled
# if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
# logger.info("Attempting to fetch historical data from TimescaleDB")
# loaded_from_db = False
# # Load candles for each timeframe from TimescaleDB
# for tf in self.timeframes:
# try:
# candles = timescaledb_handler.fetch_candles(symbol, tf, limit)
# if candles:
# self.candles[tf] = candles
# loaded_from_db = True
# logger.info(f"Loaded {len(candles)} {tf} candles from TimescaleDB")
# else:
# logger.info(f"No {tf} candles found in TimescaleDB")
# except Exception as e:
# logger.error(f"Error loading {tf} candles from TimescaleDB: {str(e)}")
# if loaded_from_db:
# logger.info("Successfully loaded historical data from TimescaleDB")
# return True
# else:
# logger.info("TimescaleDB not available or disabled")
# # If no TimescaleDB data and no cache, we need to get from Binance API
# if not cache_loaded:
# logger.info("Loading data from Binance API...")
# # Create a BinanceHistoricalData instance
# historical_data = BinanceHistoricalData()
# # Load data for each timeframe
# success_count = 0
# for tf in self.timeframes:
# if tf != "1s": # Skip 1s since we'll generate it from ticks
# try:
# logger.info(f"Fetching {tf} candles for {symbol}...")
# df = historical_data.get_historical_candles(symbol, self._timeframe_to_seconds(tf), limit)
# if df is not None and not df.empty:
# logger.info(f"Loaded {len(df)} {tf} candles from Binance API")
# # Convert to our candle format and store
# candles = []
# for _, row in df.iterrows():
# candle = {
# 'timestamp': row['timestamp'],
# 'open': row['open'],
# 'high': row['high'],
# 'low': row['low'],
# 'close': row['close'],
# 'volume': row['volume']
# }
# candles.append(candle)
# # Also save to TimescaleDB if enabled
# if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
# timescaledb_handler.upsert_candle(symbol, tf, candle)
# self.candles[tf] = candles
# success_count += 1
# else:
# logger.warning(f"No data returned for {tf} candles")
# except Exception as e:
# logger.error(f"Error loading {tf} candles: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# logger.info(f"Successfully loaded {success_count} timeframes from Binance API")
# # For 1s, load from API if possible or compute from first available timeframe
# if "1s" in self.timeframes:
# logger.info("Loading 1s candles...")
# # Try to get 1s data from Binance
# try:
# df_1s = historical_data.get_historical_candles(symbol, 1, 300) # Only need recent 1s data
# if df_1s is not None and not df_1s.empty:
# logger.info(f"Loaded {len(df_1s)} recent 1s candles from Binance API")
# # Convert to our candle format and store
# candles_1s = []
# for _, row in df_1s.iterrows():
# candle = {
# 'timestamp': row['timestamp'],
# 'open': row['open'],
# 'high': row['high'],
# 'low': row['low'],
# 'close': row['close'],
# 'volume': row['volume']
# }
# candles_1s.append(candle)
# # Also save to TimescaleDB if enabled
# if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
# timescaledb_handler.upsert_candle(symbol, "1s", candle)
# self.candles["1s"] = candles_1s
# except Exception as e:
# logger.error(f"Error loading 1s candles: {str(e)}")
# # If 1s data not available or failed to load, approximate from 1m data
# if not self.candles.get("1s"):
# logger.info("1s data not available, trying to approximate from 1m data...")
# # If 1s data not available, we can approximate from 1m data
# if "1m" in self.timeframes and self.candles["1m"]:
# # For demonstration, just use the 1m candles as placeholders for 1s
# # In a real implementation, you might want more sophisticated interpolation
# logger.info("Using 1m candles as placeholders for 1s timeframe")
# self.candles["1s"] = []
# # Take the most recent 5 minutes of 1m candles
# recent_1m = self.candles["1m"][-5:] if self.candles["1m"] else []
# logger.info(f"Creating 1s approximations from {len(recent_1m)} 1m candles")
# for candle_1m in recent_1m:
# # Create 60 1s candles for each 1m candle
# ts_base = candle_1m["timestamp"].timestamp()
# for i in range(60):
# # Create a 1s candle with interpolated values
# candle_1s = {
# 'timestamp': pd.Timestamp(int((ts_base + i) * 1_000_000_000)),
# 'open': candle_1m['open'],
# 'high': candle_1m['high'],
# 'low': candle_1m['low'],
# 'close': candle_1m['close'],
# 'volume': candle_1m['volume'] / 60.0 # Distribute volume evenly
# }
# self.candles["1s"].append(candle_1s)
# # Also save to TimescaleDB if enabled
# if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
# timescaledb_handler.upsert_candle(symbol, "1s", candle_1s)
# logger.info(f"Created {len(self.candles['1s'])} approximated 1s candles")
# else:
# logger.warning("No 1m data available to approximate 1s candles from")
# # Set the last candle of each timeframe as the current candle
# for tf in self.timeframes:
# if self.candles[tf]:
# self.current_candle[tf] = self.candles[tf][-1].copy()
# self.last_candle_timestamp[tf] = self.current_candle[tf]["timestamp"]
# logger.debug(f"Set current candle for {tf}: {self.current_candle[tf]['timestamp']}")
# # If we loaded ticks from cache, rebuild candles
# if cache_loaded:
# logger.info("Rebuilding candles from cached ticks...")
# # Clear candles
# self.candles = {tf: [] for tf in self.timeframes}
# self.current_candle = {tf: None for tf in self.timeframes}
# # Process each tick to rebuild the candles
# for tick in self.ticks:
# for tf in self.timeframes:
# if tf == "1s":
# self._update_1s_candle(tick)
# else:
# self._update_candles_for_timeframe(tf, tick)
# logger.info("Finished rebuilding candles from ticks")
# # Log final results
# for tf in self.timeframes:
# count = len(self.candles[tf])
# logger.info(f"Final {tf} candle count: {count}")
# has_data = cache_loaded or any(self.candles[tf] for tf in self.timeframes)
# logger.info(f"Historical data loading completed. Has data: {has_data}")
# return has_data
# def _try_cache_ticks(self):
# """Try to save ticks to cache periodically"""
# # Only save to cache every 100 ticks to avoid excessive disk I/O
# if len(self.ticks) % 100 == 0:
# try:
# self._save_to_cache()
# except Exception as e:
# # Don't spam logs with cache errors, just log once every 1000 ticks
# if len(self.ticks) % 1000 == 0:
# logger.warning(f"Cache save failed at {len(self.ticks)} ticks: {str(e)}")
# pass # Continue even if cache fails
# class Position:
# """Represents a trading position"""
# def __init__(self, action, entry_price, amount, timestamp=None, trade_id=None, fee_rate=0.0002):
# self.action = action
# self.entry_price = entry_price
# self.amount = amount
# self.entry_timestamp = timestamp or datetime.now()
# self.exit_timestamp = None
# self.exit_price = None
# self.pnl = None
# self.is_open = True
# self.trade_id = trade_id or str(uuid.uuid4())[:8]
# self.fee_rate = fee_rate
# self.paid_fee = entry_price * amount * fee_rate # Calculate entry fee
# def close(self, exit_price, exit_timestamp=None):
# """Close an open position"""
# self.exit_price = exit_price
# self.exit_timestamp = exit_timestamp or datetime.now()
# self.is_open = False
# # Calculate P&L
# if self.action == "BUY":
# price_diff = self.exit_price - self.entry_price
# # Calculate fee for exit trade
# exit_fee = exit_price * self.amount * self.fee_rate
# self.paid_fee += exit_fee # Add exit fee to total paid fee
# self.pnl = (price_diff * self.amount) - self.paid_fee
# else: # SELL
# price_diff = self.entry_price - self.exit_price
# # Calculate fee for exit trade
# exit_fee = exit_price * self.amount * self.fee_rate
# self.paid_fee += exit_fee # Add exit fee to total paid fee
# self.pnl = (price_diff * self.amount) - self.paid_fee
# return self.pnl
# class RealTimeChart:
# def __init__(self, app=None, symbol='BTCUSDT', timeframe='1m', standalone=True, chart_title=None,
# run_signal_interpreter=False, debug_mode=False, historical_candles=None,
# extended_hours=False, enable_logging=True, agent=None, trading_env=None,
# max_memory_usage=90, memory_check_interval=10, tick_update_interval=0.5,
# chart_update_interval=1, performance_monitoring=False, show_volume=True,
# show_indicators=True, custom_trades=None, port=8050, height=900, width=1200,
# positions_callback=None, allow_synthetic_data=True, tick_storage=None):
# """Initialize a real-time chart with support for multiple indicators and backtesting."""
# # Store parameters
# self.symbol = symbol
# self.timeframe = timeframe
# self.debug_mode = debug_mode
# self.standalone = standalone
# self.chart_title = chart_title or f"{symbol} Real-Time Chart"
# self.extended_hours = extended_hours
# self.enable_logging = enable_logging
# self.run_signal_interpreter = run_signal_interpreter
# self.historical_candles = historical_candles
# self.performance_monitoring = performance_monitoring
# self.max_memory_usage = max_memory_usage
# self.memory_check_interval = memory_check_interval
# self.tick_update_interval = tick_update_interval
# self.chart_update_interval = chart_update_interval
# self.show_volume = show_volume
# self.show_indicators = show_indicators
# self.custom_trades = custom_trades
# self.port = port
# self.height = height
# self.width = width
# self.positions_callback = positions_callback
# self.allow_synthetic_data = allow_synthetic_data
# # Initialize interval store
# self.interval_store = {'interval': 1} # Default to 1s timeframe
# # Initialize trading components
# self.agent = agent
# self.trading_env = trading_env
# # Initialize button styles for timeframe selection
# self.button_style = {
# 'background': '#343a40',
# 'color': 'white',
# 'border': 'none',
# 'padding': '10px 20px',
# 'margin': '0 5px',
# 'borderRadius': '4px',
# 'cursor': 'pointer'
# }
# self.active_button_style = {
# 'background': '#007bff',
# 'color': 'white',
# 'border': 'none',
# 'padding': '10px 20px',
# 'margin': '0 5px',
# 'borderRadius': '4px',
# 'cursor': 'pointer',
# 'fontWeight': 'bold'
# }
# # Initialize color schemes
# self.colors = {
# 'background': '#1e1e1e',
# 'text': '#ffffff',
# 'grid': '#333333',
# 'candle_up': '#26a69a',
# 'candle_down': '#ef5350',
# 'volume_up': 'rgba(38, 166, 154, 0.3)',
# 'volume_down': 'rgba(239, 83, 80, 0.3)',
# 'ma': '#ffeb3b',
# 'ema': '#29b6f6',
# 'bollinger_bands': '#ff9800',
# 'trades_buy': '#00e676',
# 'trades_sell': '#ff1744'
# }
# # Initialize data storage
# self.all_trades = [] # Store trades
# self.positions = [] # Store open positions
# self.latest_price = 0.0
# self.latest_volume = 0.0
# self.latest_timestamp = datetime.now()
# self.current_balance = 100.0 # Starting balance
# self.accumulative_pnl = 0.0 # Accumulated profit/loss
# # Initialize trade rate counter
# self.trade_count = 0
# self.start_time = time.time()
# self.trades_per_second = 0
# self.trades_per_minute = 0
# self.trades_per_hour = 0
# # Initialize trade rate tracking variables
# self.trade_times = [] # Store timestamps of recent trades for rate calculation
# self.last_trade_rate_calculation = datetime.now()
# self.trade_rate = {"per_second": 0, "per_minute": 0, "per_hour": 0}
# # Initialize interactive components
# self.app = app
# # Create a new app if not provided
# if self.app is None and standalone:
# self.app = dash.Dash(
# __name__,
# external_stylesheets=[dbc.themes.DARKLY],
# suppress_callback_exceptions=True
# )
# # Initialize tick storage if not provided
# if tick_storage is None:
# # Check if TimescaleDB integration is enabled
# use_timescaledb = TIMESCALEDB_ENABLED and timescaledb_handler is not None
# # Create a new tick storage
# self.tick_storage = TickStorage(
# symbol=symbol,
# timeframes=["1s", "1m", "5m", "15m", "1h", "4h", "1d"],
# use_timescaledb=use_timescaledb
# )
# # Load historical data immediately for cold start
# logger.info(f"Loading historical data for {symbol} during chart initialization")
# try:
# data_loaded = self.tick_storage.load_historical_data(symbol)
# if data_loaded:
# logger.info(f"Successfully loaded historical data for {symbol}")
# # Log what we have
# for tf in ["1s", "1m", "5m", "15m", "1h"]:
# candle_count = len(self.tick_storage.candles.get(tf, []))
# logger.info(f" {tf}: {candle_count} candles")
# else:
# logger.warning(f"Failed to load historical data for {symbol}")
# except Exception as e:
# logger.error(f"Error loading historical data during initialization: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# else:
# self.tick_storage = tick_storage
# # Create layout and callbacks if app is provided
# if self.app is not None:
# # Create the layout
# self.app.layout = self._create_layout()
# # Register callbacks
# self._setup_callbacks()
# # Log initialization
# if self.enable_logging:
# logger.info(f"RealTimeChart initialized: {self.symbol} ({self.timeframe}) ")
# def _create_layout(self):
# return html.Div([
# # Header section with title and current price
# html.Div([
# html.H1(f"{self.symbol} Real-Time Chart", className="display-4"),
# # Current price ticker
# html.Div([
# html.H4("Current Price:", style={"display": "inline-block", "marginRight": "10px"}),
# html.H3(id="current-price", style={"display": "inline-block", "color": "#17a2b8"}),
# html.Div([
# html.H5("Balance:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
# html.H5(id="current-balance", style={"display": "inline-block", "color": "#28a745"}),
# ], style={"display": "inline-block", "marginLeft": "40px"}),
# html.Div([
# html.H5("Accumulated PnL:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
# html.H5(id="accumulated-pnl", style={"display": "inline-block", "color": "#ffc107"}),
# ], style={"display": "inline-block", "marginLeft": "40px"}),
# # Add trade rate display
# html.Div([
# html.H5("Trade Rate:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
# html.Span([
# html.Span(id="trade-rate-second", style={"color": "#ff7f0e"}),
# html.Span("/s, "),
# html.Span(id="trade-rate-minute", style={"color": "#ff7f0e"}),
# html.Span("/m, "),
# html.Span(id="trade-rate-hour", style={"color": "#ff7f0e"}),
# html.Span("/h")
# ], style={"display": "inline-block"}),
# ], style={"display": "inline-block", "marginLeft": "40px"}),
# ], style={"textAlign": "center", "margin": "20px 0"}),
# ], style={"textAlign": "center", "marginBottom": "20px"}),
# # Add interval component for periodic updates
# dcc.Interval(
# id='interval-component',
# interval=500, # in milliseconds
# n_intervals=0
# ),
# # Add timeframe selection buttons
# html.Div([
# html.Button('1s', id='btn-1s', n_clicks=0, style=self.active_button_style),
# html.Button('5s', id='btn-5s', n_clicks=0, style=self.button_style),
# html.Button('15s', id='btn-15s', n_clicks=0, style=self.button_style),
# html.Button('1m', id='btn-1m', n_clicks=0, style=self.button_style),
# html.Button('5m', id='btn-5m', n_clicks=0, style=self.button_style),
# html.Button('15m', id='btn-15m', n_clicks=0, style=self.button_style),
# html.Button('1h', id='btn-1h', n_clicks=0, style=self.button_style),
# ], style={"textAlign": "center", "marginBottom": "20px"}),
# # Store for the selected timeframe
# dcc.Store(id='interval-store', data={'interval': 1}),
# # Chart content (without wrapper div to avoid callback issues)
# dcc.Graph(id='live-chart', style={"height": "600px"}),
# dcc.Graph(id='secondary-charts', style={"height": "500px"}),
# html.Div(id='positions-list')
# ])
# def _create_chart_and_controls(self):
# """Create the chart and controls for the dashboard."""
# try:
# # Get selected interval from the dashboard (default to 1s if not available)
# interval_seconds = 1
# if hasattr(self, 'interval_store') and self.interval_store:
# interval_seconds = self.interval_store.get('interval', 1)
# # Create chart components
# chart_div = html.Div([
# # Update chart with data for the selected interval
# dcc.Graph(
# id='live-chart',
# figure=self._update_main_chart(interval_seconds),
# style={"height": "600px"}
# ),
# # Update secondary charts
# dcc.Graph(
# id='secondary-charts',
# figure=self._update_secondary_charts(),
# style={"height": "500px"}
# ),
# # Update positions list
# html.Div(
# id='positions-list',
# children=self._get_position_list_rows()
# )
# ])
# return chart_div
# except Exception as e:
# logger.error(f"Error creating chart and controls: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# # Return a simple error message as fallback
# return html.Div(f"Error loading chart: {str(e)}", style={"color": "red", "padding": "20px"})
# def _setup_callbacks(self):
# """Setup Dash callbacks for the real-time chart"""
# if self.app is None:
# return
# try:
# # Update chart with all components based on interval
# @self.app.callback(
# [
# Output('live-chart', 'figure'),
# Output('secondary-charts', 'figure'),
# Output('positions-list', 'children'),
# Output('current-price', 'children'),
# Output('current-balance', 'children'),
# Output('accumulated-pnl', 'children'),
# Output('trade-rate-second', 'children'),
# Output('trade-rate-minute', 'children'),
# Output('trade-rate-hour', 'children')
# ],
# [
# Input('interval-component', 'n_intervals'),
# Input('interval-store', 'data')
# ]
# )
# def update_all(n_intervals, interval_data):
# """Update all chart components"""
# try:
# # Get selected interval
# interval_seconds = interval_data.get('interval', 1) if interval_data else 1
# # Update main chart - limit data for performance
# main_chart = self._update_main_chart(interval_seconds)
# # Update secondary charts - limit data for performance
# secondary_charts = self._update_secondary_charts()
# # Update positions list
# positions_list = self._get_position_list_rows()
# # Update current price and balance
# current_price = f"${self.latest_price:.2f}" if self.latest_price else "Error"
# current_balance = f"${self.current_balance:.2f}"
# accumulated_pnl = f"${self.accumulative_pnl:.2f}"
# # Calculate trade rates
# trade_rate = self._calculate_trade_rate()
# trade_rate_second = f"{trade_rate['per_second']:.1f}"
# trade_rate_minute = f"{trade_rate['per_minute']:.1f}"
# trade_rate_hour = f"{trade_rate['per_hour']:.1f}"
# return (main_chart, secondary_charts, positions_list,
# current_price, current_balance, accumulated_pnl,
# trade_rate_second, trade_rate_minute, trade_rate_hour)
# except Exception as e:
# logger.error(f"Error in update_all callback: {str(e)}")
# # Return empty/error states
# import plotly.graph_objects as go
# empty_fig = go.Figure()
# empty_fig.add_annotation(text="Chart Loading...", xref="paper", yref="paper", x=0.5, y=0.5)
# return (empty_fig, empty_fig, [], "Loading...", "$0.00", "$0.00", "0.0", "0.0", "0.0")
# # Timeframe selection callbacks
# @self.app.callback(
# [Output('interval-store', 'data'),
# Output('btn-1s', 'style'), Output('btn-5s', 'style'), Output('btn-15s', 'style'),
# Output('btn-1m', 'style'), Output('btn-5m', 'style'), Output('btn-15m', 'style'),
# Output('btn-1h', 'style')],
# [Input('btn-1s', 'n_clicks'), Input('btn-5s', 'n_clicks'), Input('btn-15s', 'n_clicks'),
# Input('btn-1m', 'n_clicks'), Input('btn-5m', 'n_clicks'), Input('btn-15m', 'n_clicks'),
# Input('btn-1h', 'n_clicks')]
# )
# def update_timeframe(n1s, n5s, n15s, n1m, n5m, n15m, n1h):
# """Update selected timeframe based on button clicks"""
# ctx = dash.callback_context
# if not ctx.triggered:
# # Default to 1s
# styles = [self.active_button_style] + [self.button_style] * 6
# return {'interval': 1}, *styles
# button_id = ctx.triggered[0]['prop_id'].split('.')[0]
# # Map button to interval seconds
# interval_map = {
# 'btn-1s': 1, 'btn-5s': 5, 'btn-15s': 15,
# 'btn-1m': 60, 'btn-5m': 300, 'btn-15m': 900, 'btn-1h': 3600
# }
# selected_interval = interval_map.get(button_id, 1)
# # Create styles - active for selected, normal for others
# button_names = ['btn-1s', 'btn-5s', 'btn-15s', 'btn-1m', 'btn-5m', 'btn-15m', 'btn-1h']
# styles = []
# for name in button_names:
# if name == button_id:
# styles.append(self.active_button_style)
# else:
# styles.append(self.button_style)
# return {'interval': selected_interval}, *styles
# logger.info("Dash callbacks registered successfully")
# except Exception as e:
# logger.error(f"Error setting up callbacks: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# def _calculate_trade_rate(self):
# """Calculate trading rate per second, minute, and hour"""
# try:
# now = datetime.now()
# current_time = time.time()
# # Filter trades within different time windows
# trades_last_second = sum(1 for trade_time in self.trade_times if current_time - trade_time <= 1)
# trades_last_minute = sum(1 for trade_time in self.trade_times if current_time - trade_time <= 60)
# trades_last_hour = sum(1 for trade_time in self.trade_times if current_time - trade_time <= 3600)
# return {
# "per_second": trades_last_second,
# "per_minute": trades_last_minute,
# "per_hour": trades_last_hour
# }
# except Exception as e:
# logger.warning(f"Error calculating trade rate: {str(e)}")
# return {"per_second": 0.0, "per_minute": 0.0, "per_hour": 0.0}
# def _update_secondary_charts(self):
# """Create secondary charts for volume and indicators"""
# try:
# # Create subplots for secondary charts
# fig = make_subplots(
# rows=2, cols=1,
# subplot_titles=['Volume', 'Technical Indicators'],
# shared_xaxes=True,
# vertical_spacing=0.1,
# row_heights=[0.3, 0.7]
# )
# # Get latest candles (limit for performance)
# candles = self.tick_storage.candles.get("1m", [])[-100:] # Last 100 candles for performance
# if not candles:
# fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5)
# fig.update_layout(
# title="Secondary Charts",
# template="plotly_dark",
# height=400
# )
# return fig
# # Extract data
# timestamps = [candle['timestamp'] for candle in candles]
# volumes = [candle['volume'] for candle in candles]
# closes = [candle['close'] for candle in candles]
# # Volume chart
# colors = ['#26a69a' if i == 0 or closes[i] >= closes[i-1] else '#ef5350' for i in range(len(closes))]
# fig.add_trace(
# go.Bar(
# x=timestamps,
# y=volumes,
# name='Volume',
# marker_color=colors,
# showlegend=False
# ),
# row=1, col=1
# )
# # Technical indicators
# if len(closes) >= 20:
# # Simple moving average
# sma_20 = pd.Series(closes).rolling(window=20).mean()
# fig.add_trace(
# go.Scatter(
# x=timestamps,
# y=sma_20,
# name='SMA 20',
# line=dict(color='#ffeb3b', width=2)
# ),
# row=2, col=1
# )
# # RSI calculation
# if len(closes) >= 14:
# rsi = self._calculate_rsi(closes, 14)
# fig.add_trace(
# go.Scatter(
# x=timestamps,
# y=rsi,
# name='RSI',
# line=dict(color='#29b6f6', width=2),
# yaxis='y3'
# ),
# row=2, col=1
# )
# # Update layout
# fig.update_layout(
# title="Volume & Technical Indicators",
# template="plotly_dark",
# height=400,
# showlegend=True,
# legend=dict(x=0, y=1, bgcolor='rgba(0,0,0,0)')
# )
# # Update y-axes
# fig.update_yaxes(title="Volume", row=1, col=1)
# fig.update_yaxes(title="Price", row=2, col=1)
# return fig
# except Exception as e:
# logger.error(f"Error creating secondary charts: {str(e)}")
# # Return empty figure on error
# fig = go.Figure()
# fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
# fig.update_layout(template="plotly_dark", height=400)
# return fig
# def _calculate_rsi(self, prices, period=14):
# """Calculate RSI indicator"""
# try:
# prices = pd.Series(prices)
# delta = prices.diff()
# gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
# loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
# rs = gain / loss
# rsi = 100 - (100 / (1 + rs))
# return rsi.fillna(50).tolist() # Fill NaN with neutral RSI value
# except Exception:
# return [50] * len(prices) # Return neutral RSI on error
# def _get_position_list_rows(self):
# """Get list of current positions for display"""
# try:
# if not self.positions:
# return [html.Div("No open positions", style={"color": "#888", "padding": "10px"})]
# rows = []
# for i, position in enumerate(self.positions):
# try:
# # Calculate current PnL
# current_pnl = (self.latest_price - position.entry_price) * position.amount
# if position.action.upper() == 'SELL':
# current_pnl = -current_pnl
# # Create position row
# row = html.Div([
# html.Span(f"#{i+1}: ", style={"fontWeight": "bold"}),
# html.Span(f"{position.action.upper()} ",
# style={"color": "#00e676" if position.action.upper() == "BUY" else "#ff1744"}),
# html.Span(f"{position.amount:.4f} @ ${position.entry_price:.2f} "),
# html.Span(f"PnL: ${current_pnl:.2f}",
# style={"color": "#00e676" if current_pnl >= 0 else "#ff1744"})
# ], style={"padding": "5px", "borderBottom": "1px solid #333"})
# rows.append(row)
# except Exception as e:
# logger.warning(f"Error formatting position {i}: {str(e)}")
# return rows
# except Exception as e:
# logger.error(f"Error getting position list: {str(e)}")
# return [html.Div("Error loading positions", style={"color": "red", "padding": "10px"})]
# def add_trade(self, action, price, amount, timestamp=None, trade_id=None):
# """Add a trade to the chart and update tracking"""
# try:
# if timestamp is None:
# timestamp = datetime.now()
# # Create trade record
# trade = {
# 'id': trade_id or str(uuid.uuid4()),
# 'action': action.upper(),
# 'price': float(price),
# 'amount': float(amount),
# 'timestamp': timestamp,
# 'value': float(price) * float(amount)
# }
# # Add to trades list
# self.all_trades.append(trade)
# # Update trade rate tracking
# self.trade_times.append(time.time())
# # Keep only last hour of trade times
# cutoff_time = time.time() - 3600
# self.trade_times = [t for t in self.trade_times if t > cutoff_time]
# # Update positions
# if action.upper() in ['BUY', 'SELL']:
# position = Position(
# action=action.upper(),
# entry_price=float(price),
# amount=float(amount),
# timestamp=timestamp,
# trade_id=trade['id']
# )
# self.positions.append(position)
# # Update balance and PnL
# if action.upper() == 'BUY':
# self.current_balance -= trade['value']
# else: # SELL
# self.current_balance += trade['value']
# # Calculate PnL for this trade
# if len(self.all_trades) > 1:
# # Simple PnL calculation - more sophisticated logic could be added
# last_opposite_trades = [t for t in reversed(self.all_trades[:-1])
# if t['action'] != action.upper()]
# if last_opposite_trades:
# last_trade = last_opposite_trades[0]
# if action.upper() == 'SELL':
# pnl = (float(price) - last_trade['price']) * float(amount)
# else: # BUY
# pnl = (last_trade['price'] - float(price)) * float(amount)
# self.accumulative_pnl += pnl
# logger.info(f"Added trade: {action.upper()} {amount} @ ${price:.2f}")
# except Exception as e:
# logger.error(f"Error adding trade: {str(e)}")
# def _get_interval_key(self, interval_seconds):
# """Convert interval seconds to timeframe key"""
# if interval_seconds <= 1:
# return "1s"
# elif interval_seconds <= 5:
# return "5s" if "5s" in self.tick_storage.timeframes else "1s"
# elif interval_seconds <= 15:
# return "15s" if "15s" in self.tick_storage.timeframes else "1m"
# elif interval_seconds <= 60:
# return "1m"
# elif interval_seconds <= 300:
# return "5m"
# elif interval_seconds <= 900:
# return "15m"
# elif interval_seconds <= 3600:
# return "1h"
# elif interval_seconds <= 14400:
# return "4h"
# else:
# return "1d"
# def _update_main_chart(self, interval_seconds):
# """Update the main chart for the specified interval"""
# try:
# # Convert interval seconds to timeframe key
# interval_key = self._get_interval_key(interval_seconds)
# # Get candles for this timeframe (limit to last 100 for performance)
# candles = self.tick_storage.candles.get(interval_key, [])[-100:]
# if not candles:
# logger.warning(f"No candle data available for {interval_key}")
# # Return empty figure with a message
# fig = go.Figure()
# fig.add_annotation(
# text=f"No data available for {interval_key}",
# xref="paper", yref="paper",
# x=0.5, y=0.5,
# showarrow=False,
# font=dict(size=16, color="white")
# )
# fig.update_layout(
# title=f"{self.symbol} - {interval_key} Chart",
# template="plotly_dark",
# height=600
# )
# return fig
# # Extract data from candles
# timestamps = [candle['timestamp'] for candle in candles]
# opens = [candle['open'] for candle in candles]
# highs = [candle['high'] for candle in candles]
# lows = [candle['low'] for candle in candles]
# closes = [candle['close'] for candle in candles]
# volumes = [candle['volume'] for candle in candles]
# # Create candlestick chart
# fig = go.Figure()
# # Add candlestick trace
# fig.add_trace(go.Candlestick(
# x=timestamps,
# open=opens,
# high=highs,
# low=lows,
# close=closes,
# name="Price",
# increasing_line_color='#26a69a',
# decreasing_line_color='#ef5350',
# increasing_fillcolor='#26a69a',
# decreasing_fillcolor='#ef5350'
# ))
# # Add trade markers if we have trades
# if self.all_trades:
# # Filter trades to match the current timeframe window
# start_time = timestamps[0] if timestamps else datetime.now() - timedelta(hours=1)
# end_time = timestamps[-1] if timestamps else datetime.now()
# filtered_trades = [
# trade for trade in self.all_trades
# if start_time <= trade['timestamp'] <= end_time
# ]
# if filtered_trades:
# buy_trades = [t for t in filtered_trades if t['action'] == 'BUY']
# sell_trades = [t for t in filtered_trades if t['action'] == 'SELL']
# # Add BUY markers
# if buy_trades:
# fig.add_trace(go.Scatter(
# x=[t['timestamp'] for t in buy_trades],
# y=[t['price'] for t in buy_trades],
# mode='markers',
# marker=dict(
# symbol='triangle-up',
# size=12,
# color='#00e676',
# line=dict(color='white', width=1)
# ),
# name='BUY',
# text=[f"BUY {t['amount']:.4f} @ ${t['price']:.2f}" for t in buy_trades],
# hovertemplate='%{text}
Time: %{x}'
# ))
# # Add SELL markers
# if sell_trades:
# fig.add_trace(go.Scatter(
# x=[t['timestamp'] for t in sell_trades],
# y=[t['price'] for t in sell_trades],
# mode='markers',
# marker=dict(
# symbol='triangle-down',
# size=12,
# color='#ff1744',
# line=dict(color='white', width=1)
# ),
# name='SELL',
# text=[f"SELL {t['amount']:.4f} @ ${t['price']:.2f}" for t in sell_trades],
# hovertemplate='%{text}
Time: %{x}'
# ))
# # Add moving averages if we have enough data
# if len(closes) >= 20:
# # 20-period SMA
# sma_20 = pd.Series(closes).rolling(window=20).mean()
# fig.add_trace(go.Scatter(
# x=timestamps,
# y=sma_20,
# name='SMA 20',
# line=dict(color='#ffeb3b', width=1),
# opacity=0.7
# ))
# if len(closes) >= 50:
# # 50-period SMA
# sma_50 = pd.Series(closes).rolling(window=50).mean()
# fig.add_trace(go.Scatter(
# x=timestamps,
# y=sma_50,
# name='SMA 50',
# line=dict(color='#ff9800', width=1),
# opacity=0.7
# ))
# # Update layout
# fig.update_layout(
# title=f"{self.symbol} - {interval_key} Chart ({len(candles)} candles)",
# template="plotly_dark",
# height=600,
# xaxis_title="Time",
# yaxis_title="Price ($)",
# legend=dict(
# yanchor="top",
# y=0.99,
# xanchor="left",
# x=0.01,
# bgcolor="rgba(0,0,0,0.5)"
# ),
# hovermode='x unified',
# dragmode='pan'
# )
# # Remove range slider for better performance
# fig.update_layout(xaxis_rangeslider_visible=False)
# # Update the latest price
# if closes:
# self.latest_price = closes[-1]
# self.latest_timestamp = timestamps[-1]
# return fig
# except Exception as e:
# logger.error(f"Error updating main chart: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# # Return error figure
# fig = go.Figure()
# fig.add_annotation(
# text=f"Chart Error: {str(e)}",
# xref="paper", yref="paper",
# x=0.5, y=0.5,
# showarrow=False,
# font=dict(size=16, color="red")
# )
# fig.update_layout(
# title="Chart Error",
# template="plotly_dark",
# height=600
# )
# return fig
# def set_trading_env(self, trading_env):
# """Set the trading environment to monitor for new trades"""
# self.trading_env = trading_env
# if hasattr(trading_env, 'add_trade_callback'):
# trading_env.add_trade_callback(self.add_trade)
# logger.info("Trading environment integrated with chart")
# def set_agent(self, agent):
# """Set the agent to monitor for trading decisions"""
# self.agent = agent
# logger.info("Agent integrated with chart")
# def update_from_env(self, env_data):
# """Update chart data from trading environment"""
# try:
# if 'latest_price' in env_data:
# self.latest_price = env_data['latest_price']
# if 'balance' in env_data:
# self.current_balance = env_data['balance']
# if 'pnl' in env_data:
# self.accumulative_pnl = env_data['pnl']
# if 'trades' in env_data:
# # Add any new trades
# for trade in env_data['trades']:
# if trade not in self.all_trades:
# self.add_trade(
# action=trade.get('action', 'HOLD'),
# price=trade.get('price', self.latest_price),
# amount=trade.get('amount', 0.1),
# timestamp=trade.get('timestamp', datetime.now()),
# trade_id=trade.get('id')
# )
# except Exception as e:
# logger.error(f"Error updating from environment: {str(e)}")
# def get_latest_data(self):
# """Get the latest data for external systems"""
# return {
# 'latest_price': self.latest_price,
# 'latest_volume': self.latest_volume,
# 'latest_timestamp': self.latest_timestamp,
# 'current_balance': self.current_balance,
# 'accumulative_pnl': self.accumulative_pnl,
# 'positions': len(self.positions),
# 'trade_count': len(self.all_trades),
# 'trade_rate': self._calculate_trade_rate()
# }
# async def start_websocket(self):
# """Start the websocket connection for real-time data"""
# try:
# logger.info("Starting websocket connection for real-time data")
# # Start the websocket data fetching
# websocket_url = "wss://stream.binance.com:9443/ws/ethusdt@ticker"
# async def websocket_handler():
# """Handle websocket connection and data updates"""
# try:
# async with websockets.connect(websocket_url) as websocket:
# logger.info(f"WebSocket connected for {self.symbol}")
# message_count = 0
# async for message in websocket:
# try:
# data = json.loads(message)
# # Update tick storage with new price data
# tick = {
# 'price': float(data['c']), # Current price
# 'volume': float(data['v']), # Volume
# 'timestamp': pd.Timestamp.now()
# }
# self.tick_storage.add_tick(tick)
# # Update chart's latest price and volume
# self.latest_price = float(data['c'])
# self.latest_volume = float(data['v'])
# self.latest_timestamp = pd.Timestamp.now()
# message_count += 1
# # Log periodic updates
# if message_count % 100 == 0:
# logger.info(f"Received message #{message_count}")
# logger.info(f"Processed {message_count} ticks, current price: ${self.latest_price:.2f}")
# # Log candle counts
# candle_count = len(self.tick_storage.candles.get("1s", []))
# logger.info(f"Current 1s candles count: {candle_count}")
# except json.JSONDecodeError as e:
# logger.warning(f"Failed to parse websocket message: {str(e)}")
# except Exception as e:
# logger.error(f"Error processing websocket message: {str(e)}")
# except websockets.exceptions.ConnectionClosed:
# logger.warning("WebSocket connection closed")
# except Exception as e:
# logger.error(f"WebSocket error: {str(e)}")
# # Start the websocket handler in the background
# await websocket_handler()
# except Exception as e:
# logger.error(f"Error starting websocket: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())
# def run(self, host='127.0.0.1', port=8050, debug=False):
# """Run the Dash app"""
# try:
# if self.app is None:
# logger.error("No Dash app instance available")
# return
# logger.info("="*60)
# logger.info("🔗 ACCESS WEB UI AT: http://localhost:8050/")
# logger.info("📊 View live trading data and charts in your browser")
# logger.info("="*60)
# # Run the app - FIXED: Updated for newer Dash versions
# self.app.run(
# host=host,
# port=port,
# debug=debug,
# use_reloader=False, # Disable reloader to avoid conflicts
# threaded=True # Enable threading for better performance
# )
# except Exception as e:
# logger.error(f"Error running Dash app: {str(e)}")
# import traceback
# logger.error(traceback.format_exc())