# Quick Start Guide ## 🚀 Fastest Way to Start ### First Time Setup ```bash cd /mnt/shared/DEV/repos/d-popov.com/gogo2 python -m venv venv source venv/bin/activate pip install -r requirements.txt # Auto-detect and install correct PyTorch (NVIDIA/AMD/CPU) ./scripts/setup-pytorch.sh ``` ### Daily Use (After Setup) Your system is **ready to go** with GPU support! ```bash cd /mnt/shared/DEV/repos/d-popov.com/gogo2 source venv/bin/activate python kill_dashboard.py # Kill any stale processes python ANNOTATE/web/app.py ``` **Access:** http://localhost:8051 **GPU Status:** - ✅ AMD Radeon Graphics (Strix Halo 8050S/8060S) - ✅ ROCm 6.2 PyTorch installed - ✅ 47GB shared memory - ✅ 2-3x faster training vs CPU ## Alternative: Use Existing Docker Container You have `amd-strix-halo-llama-rocm` container already running with ROCm support: ### Setup Container (One-Time) ```bash # 1. Install Python in container (Fedora-based) docker exec amd-strix-halo-llama-rocm dnf install -y python3.12 python3-pip python3-devel git # 2. Create symlinks docker exec amd-strix-halo-llama-rocm bash -c "ln -sf /usr/bin/python3.12 /usr/bin/python3 && ln -sf /usr/bin/python3.12 /usr/bin/python" # 3. Copy project to container docker exec amd-strix-halo-llama-rocm mkdir -p /workspace docker cp /mnt/shared/DEV/repos/d-popov.com/gogo2 amd-strix-halo-llama-rocm:/workspace/ # 4. Install dependencies docker exec amd-strix-halo-llama-rocm bash -c "cd /workspace/gogo2 && pip3 install -r requirements.txt && pip3 install torch --index-url https://download.pytorch.org/whl/rocm6.2" ``` ### Start ANNOTATE in Container ```bash # Enter container docker exec -it amd-strix-halo-llama-rocm bash # Inside container: cd /workspace/gogo2 python3 ANNOTATE/web/app.py --port 8051 ``` **Access:** http://localhost:8051 (if port is exposed) **Helper script:** `./scripts/attach-to-rocm-container.sh` (guides you through setup) ## Development Workflows ### 1. ANNOTATE Dashboard (Manual Trading) ```bash source venv/bin/activate python ANNOTATE/web/app.py ``` - Create trade annotations - Train models on annotations - Test inference ### 2. Main Dashboard (Live Trading) ```bash source venv/bin/activate python main_dashboard.py --port 8050 ``` - Real-time market data - Live predictions - Performance monitoring ### 3. Training Runner ```bash source venv/bin/activate # Real-time training (4 hours) python training_runner.py --mode realtime --duration 4 --symbol ETH/USDT # Backtest training python training_runner.py --mode backtest --start-date 2024-01-01 --end-date 2024-12-31 ``` ### 4. COB Dashboard ```bash source venv/bin/activate python web/cob_realtime_dashboard.py ``` - Order book analysis - Market microstructure - Liquidity monitoring ## Troubleshooting ### Port Already in Use ```bash # Kill stale processes python kill_dashboard.py # Or manually lsof -i :8051 kill -9 ``` ### GPU Not Working ```bash # Check GPU python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}'); print(f'Device: {torch.cuda.get_device_name(0)}')" # Should show: # CUDA: True # Device: AMD Radeon Graphics ``` ### Missing Dependencies ```bash # Reinstall pip install -r requirements.txt pip install torch --index-url https://download.pytorch.org/whl/rocm6.2 ``` ## Documentation - **📖 Full Setup:** [readme.md](readme.md) - **🐳 Docker Guide:** [docs/AMD_STRIX_HALO_DOCKER.md](docs/AMD_STRIX_HALO_DOCKER.md) - **🔌 Container Usage:** [docs/USING_EXISTING_ROCM_CONTAINER.md](docs/USING_EXISTING_ROCM_CONTAINER.md) - **🎓 Training Guide:** [ANNOTATE/TRAINING_GUIDE.md](ANNOTATE/TRAINING_GUIDE.md) - **🔧 Kill Processes:** [kill_dashboard.py](kill_dashboard.py) ## Common Commands ```bash # Activate environment source venv/bin/activate # Check Python/GPU python --version python -c "import torch; print(torch.cuda.is_available())" # Kill stale processes python kill_dashboard.py # List Docker containers docker ps -a # Attach to container docker exec -it amd-strix-halo-llama-rocm bash # View logs tail -f logs/*.log ``` ## Next Steps 1. ✅ **Start ANNOTATE** - Create trading annotations 2. 📊 **Train Models** - Use your annotations to train 3. 🔴 **Live Inference** - Test predictions in real-time 4. 📈 **Monitor Performance** - Track accuracy and profits --- **System:** AMD Strix Halo (Radeon 8050S/8060S) **Status:** ✅ Ready for GPU-accelerated training **Last Updated:** 2025-11-12