training wip
This commit is contained in:
@ -2014,26 +2014,59 @@ class TradingOrchestrator:
|
||||
logger.debug(f"No fallback prediction available for {symbol}")
|
||||
return None
|
||||
|
||||
# Choose decision method based on configuration and toggle state
|
||||
# NEW BEHAVIOR: Check inference and training toggle states separately
|
||||
decision_fusion_inference_enabled = self.is_model_inference_enabled("decision_fusion")
|
||||
decision_fusion_training_enabled = self.is_model_training_enabled("decision_fusion")
|
||||
|
||||
if (
|
||||
# If training is enabled, we should also inference the model for training purposes
|
||||
# but we may not use the predictions for actions/signals depending on inference toggle
|
||||
should_inference_for_training = decision_fusion_training_enabled and (
|
||||
self.decision_fusion_enabled
|
||||
and self.decision_fusion_mode == "neural"
|
||||
and self.decision_fusion_network is not None
|
||||
)
|
||||
|
||||
# If inference is enabled, use neural decision fusion for actions
|
||||
if (
|
||||
should_inference_for_training
|
||||
and decision_fusion_inference_enabled
|
||||
):
|
||||
# Use neural decision fusion
|
||||
# Use neural decision fusion for both training and actions
|
||||
logger.debug(f"Using neural decision fusion for {symbol} (inference enabled)")
|
||||
decision = self._make_decision_fusion_decision(
|
||||
symbol=symbol,
|
||||
predictions=predictions,
|
||||
current_price=current_price,
|
||||
timestamp=current_time,
|
||||
)
|
||||
elif should_inference_for_training and not decision_fusion_inference_enabled:
|
||||
# Inference for training only, but use programmatic for actions
|
||||
logger.info(f"Decision fusion inference disabled, using programmatic mode for {symbol} (training enabled)")
|
||||
|
||||
# Make neural inference for training purposes only
|
||||
training_decision = self._make_decision_fusion_decision(
|
||||
symbol=symbol,
|
||||
predictions=predictions,
|
||||
current_price=current_price,
|
||||
timestamp=current_time,
|
||||
)
|
||||
|
||||
# Store inference for decision fusion training
|
||||
self._store_decision_fusion_inference(
|
||||
training_decision, predictions, current_price
|
||||
)
|
||||
|
||||
# Use programmatic decision for actual actions
|
||||
decision = self._combine_predictions(
|
||||
symbol=symbol,
|
||||
price=current_price,
|
||||
predictions=predictions,
|
||||
timestamp=current_time,
|
||||
)
|
||||
else:
|
||||
# Use programmatic decision combination
|
||||
if not decision_fusion_inference_enabled:
|
||||
logger.info(f"Decision fusion model disabled, using programmatic mode for {symbol}")
|
||||
# Use programmatic decision combination (no neural inference)
|
||||
if not decision_fusion_inference_enabled and not decision_fusion_training_enabled:
|
||||
logger.info(f"Decision fusion model disabled (inference and training off), using programmatic mode for {symbol}")
|
||||
else:
|
||||
logger.debug(f"Using programmatic decision combination for {symbol}")
|
||||
|
||||
@ -2044,8 +2077,11 @@ class TradingOrchestrator:
|
||||
timestamp=current_time,
|
||||
)
|
||||
|
||||
# Train decision fusion model even in programmatic mode
|
||||
if self.decision_fusion_enabled and self.decision_fusion_network is not None:
|
||||
# Train decision fusion model even in programmatic mode if training is enabled
|
||||
if (decision_fusion_training_enabled and
|
||||
self.decision_fusion_enabled and
|
||||
self.decision_fusion_network is not None):
|
||||
|
||||
# Store inference for decision fusion (like other models)
|
||||
self._store_decision_fusion_inference(
|
||||
decision, predictions, current_price
|
||||
@ -5562,8 +5598,8 @@ class TradingOrchestrator:
|
||||
# DEBUG: Log decision fusion input features
|
||||
logger.info(f"=== DECISION FUSION INPUT FEATURES ===")
|
||||
logger.info(f" Input shape: {input_features.shape}")
|
||||
logger.info(f" Input features (first 20): {input_features[0, :20].cpu().numpy()}")
|
||||
logger.info(f" Input features (last 20): {input_features[0, -20:].cpu().numpy()}")
|
||||
# logger.info(f" Input features (first 20): {input_features[0, :20].cpu().numpy()}")
|
||||
# logger.info(f" Input features (last 20): {input_features[0, -20:].cpu().numpy()}")
|
||||
logger.info(f" Input features mean: {input_features.mean().item():.4f}")
|
||||
logger.info(f" Input features std: {input_features.std().item():.4f}")
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"model_toggle_states": {
|
||||
"dqn": {
|
||||
"inference_enabled": false,
|
||||
"inference_enabled": true,
|
||||
"training_enabled": true
|
||||
},
|
||||
"cnn": {
|
||||
@ -14,12 +14,12 @@
|
||||
},
|
||||
"decision_fusion": {
|
||||
"inference_enabled": false,
|
||||
"training_enabled": true
|
||||
"training_enabled": false
|
||||
},
|
||||
"transformer": {
|
||||
"inference_enabled": true,
|
||||
"training_enabled": true
|
||||
}
|
||||
},
|
||||
"timestamp": "2025-07-29T09:18:36.627596"
|
||||
"timestamp": "2025-07-29T15:16:02.752760"
|
||||
}
|
@ -1456,6 +1456,59 @@ class CleanTradingDashboard:
|
||||
self.decision_fusion_training_enabled = enabled
|
||||
logger.info(f"Decision Fusion training toggle: {enabled}")
|
||||
return value
|
||||
|
||||
# NEW: Callback to sync toggle states from orchestrator on page load
|
||||
@self.app.callback(
|
||||
[Output('dqn-inference-toggle', 'value'),
|
||||
Output('dqn-training-toggle', 'value'),
|
||||
Output('cnn-inference-toggle', 'value'),
|
||||
Output('cnn-training-toggle', 'value'),
|
||||
Output('cob-rl-inference-toggle', 'value'),
|
||||
Output('cob-rl-training-toggle', 'value'),
|
||||
Output('decision-fusion-inference-toggle', 'value'),
|
||||
Output('decision-fusion-training-toggle', 'value')],
|
||||
[Input('interval-component', 'n_intervals')],
|
||||
prevent_initial_call=False
|
||||
)
|
||||
def sync_toggle_states_from_orchestrator(n):
|
||||
"""Sync toggle states from orchestrator to ensure UI consistency"""
|
||||
if not self.orchestrator:
|
||||
return [], [], [], [], [], [], [], []
|
||||
|
||||
try:
|
||||
# Get toggle states from orchestrator
|
||||
dqn_state = self.orchestrator.get_model_toggle_state("dqn")
|
||||
cnn_state = self.orchestrator.get_model_toggle_state("cnn")
|
||||
cob_rl_state = self.orchestrator.get_model_toggle_state("cob_rl")
|
||||
decision_fusion_state = self.orchestrator.get_model_toggle_state("decision_fusion")
|
||||
|
||||
# Convert to checklist values (list with 'enabled' if True, empty list if False)
|
||||
dqn_inf = ['enabled'] if dqn_state.get('inference_enabled', True) else []
|
||||
dqn_trn = ['enabled'] if dqn_state.get('training_enabled', True) else []
|
||||
cnn_inf = ['enabled'] if cnn_state.get('inference_enabled', True) else []
|
||||
cnn_trn = ['enabled'] if cnn_state.get('training_enabled', True) else []
|
||||
cob_rl_inf = ['enabled'] if cob_rl_state.get('inference_enabled', True) else []
|
||||
cob_rl_trn = ['enabled'] if cob_rl_state.get('training_enabled', True) else []
|
||||
decision_inf = ['enabled'] if decision_fusion_state.get('inference_enabled', True) else []
|
||||
decision_trn = ['enabled'] if decision_fusion_state.get('training_enabled', True) else []
|
||||
|
||||
# Update dashboard state variables
|
||||
self.dqn_inference_enabled = bool(dqn_inf)
|
||||
self.dqn_training_enabled = bool(dqn_trn)
|
||||
self.cnn_inference_enabled = bool(cnn_inf)
|
||||
self.cnn_training_enabled = bool(cnn_trn)
|
||||
self.cob_rl_inference_enabled = bool(cob_rl_inf)
|
||||
self.cob_rl_training_enabled = bool(cob_rl_trn)
|
||||
self.decision_fusion_inference_enabled = bool(decision_inf)
|
||||
self.decision_fusion_training_enabled = bool(decision_trn)
|
||||
|
||||
logger.debug(f"Synced toggle states from orchestrator: DQN(inf:{self.dqn_inference_enabled}, trn:{self.dqn_training_enabled}), CNN(inf:{self.cnn_inference_enabled}, trn:{self.cnn_training_enabled}), COB_RL(inf:{self.cob_rl_inference_enabled}, trn:{self.cob_rl_training_enabled}), Decision_Fusion(inf:{self.decision_fusion_inference_enabled}, trn:{self.decision_fusion_training_enabled})")
|
||||
|
||||
return dqn_inf, dqn_trn, cnn_inf, cnn_trn, cob_rl_inf, cob_rl_trn, decision_inf, decision_trn
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error syncing toggle states from orchestrator: {e}")
|
||||
return [], [], [], [], [], [], [], []
|
||||
"""Update cold start training mode"""
|
||||
logger.debug(f"Cold start callback triggered with value: {switch_value}")
|
||||
try:
|
||||
|
Reference in New Issue
Block a user