training wip

This commit is contained in:
Dobromir Popov
2025-07-29 15:25:36 +03:00
parent b3e3a7673f
commit ff41f0a278
3 changed files with 102 additions and 13 deletions

View File

@ -2014,26 +2014,59 @@ class TradingOrchestrator:
logger.debug(f"No fallback prediction available for {symbol}")
return None
# Choose decision method based on configuration and toggle state
# NEW BEHAVIOR: Check inference and training toggle states separately
decision_fusion_inference_enabled = self.is_model_inference_enabled("decision_fusion")
decision_fusion_training_enabled = self.is_model_training_enabled("decision_fusion")
if (
# If training is enabled, we should also inference the model for training purposes
# but we may not use the predictions for actions/signals depending on inference toggle
should_inference_for_training = decision_fusion_training_enabled and (
self.decision_fusion_enabled
and self.decision_fusion_mode == "neural"
and self.decision_fusion_network is not None
)
# If inference is enabled, use neural decision fusion for actions
if (
should_inference_for_training
and decision_fusion_inference_enabled
):
# Use neural decision fusion
# Use neural decision fusion for both training and actions
logger.debug(f"Using neural decision fusion for {symbol} (inference enabled)")
decision = self._make_decision_fusion_decision(
symbol=symbol,
predictions=predictions,
current_price=current_price,
timestamp=current_time,
)
elif should_inference_for_training and not decision_fusion_inference_enabled:
# Inference for training only, but use programmatic for actions
logger.info(f"Decision fusion inference disabled, using programmatic mode for {symbol} (training enabled)")
# Make neural inference for training purposes only
training_decision = self._make_decision_fusion_decision(
symbol=symbol,
predictions=predictions,
current_price=current_price,
timestamp=current_time,
)
# Store inference for decision fusion training
self._store_decision_fusion_inference(
training_decision, predictions, current_price
)
# Use programmatic decision for actual actions
decision = self._combine_predictions(
symbol=symbol,
price=current_price,
predictions=predictions,
timestamp=current_time,
)
else:
# Use programmatic decision combination
if not decision_fusion_inference_enabled:
logger.info(f"Decision fusion model disabled, using programmatic mode for {symbol}")
# Use programmatic decision combination (no neural inference)
if not decision_fusion_inference_enabled and not decision_fusion_training_enabled:
logger.info(f"Decision fusion model disabled (inference and training off), using programmatic mode for {symbol}")
else:
logger.debug(f"Using programmatic decision combination for {symbol}")
@ -2044,8 +2077,11 @@ class TradingOrchestrator:
timestamp=current_time,
)
# Train decision fusion model even in programmatic mode
if self.decision_fusion_enabled and self.decision_fusion_network is not None:
# Train decision fusion model even in programmatic mode if training is enabled
if (decision_fusion_training_enabled and
self.decision_fusion_enabled and
self.decision_fusion_network is not None):
# Store inference for decision fusion (like other models)
self._store_decision_fusion_inference(
decision, predictions, current_price
@ -5562,8 +5598,8 @@ class TradingOrchestrator:
# DEBUG: Log decision fusion input features
logger.info(f"=== DECISION FUSION INPUT FEATURES ===")
logger.info(f" Input shape: {input_features.shape}")
logger.info(f" Input features (first 20): {input_features[0, :20].cpu().numpy()}")
logger.info(f" Input features (last 20): {input_features[0, -20:].cpu().numpy()}")
# logger.info(f" Input features (first 20): {input_features[0, :20].cpu().numpy()}")
# logger.info(f" Input features (last 20): {input_features[0, -20:].cpu().numpy()}")
logger.info(f" Input features mean: {input_features.mean().item():.4f}")
logger.info(f" Input features std: {input_features.std().item():.4f}")

View File

@ -1,7 +1,7 @@
{
"model_toggle_states": {
"dqn": {
"inference_enabled": false,
"inference_enabled": true,
"training_enabled": true
},
"cnn": {
@ -14,12 +14,12 @@
},
"decision_fusion": {
"inference_enabled": false,
"training_enabled": true
"training_enabled": false
},
"transformer": {
"inference_enabled": true,
"training_enabled": true
}
},
"timestamp": "2025-07-29T09:18:36.627596"
"timestamp": "2025-07-29T15:16:02.752760"
}

View File

@ -1456,6 +1456,59 @@ class CleanTradingDashboard:
self.decision_fusion_training_enabled = enabled
logger.info(f"Decision Fusion training toggle: {enabled}")
return value
# NEW: Callback to sync toggle states from orchestrator on page load
@self.app.callback(
[Output('dqn-inference-toggle', 'value'),
Output('dqn-training-toggle', 'value'),
Output('cnn-inference-toggle', 'value'),
Output('cnn-training-toggle', 'value'),
Output('cob-rl-inference-toggle', 'value'),
Output('cob-rl-training-toggle', 'value'),
Output('decision-fusion-inference-toggle', 'value'),
Output('decision-fusion-training-toggle', 'value')],
[Input('interval-component', 'n_intervals')],
prevent_initial_call=False
)
def sync_toggle_states_from_orchestrator(n):
"""Sync toggle states from orchestrator to ensure UI consistency"""
if not self.orchestrator:
return [], [], [], [], [], [], [], []
try:
# Get toggle states from orchestrator
dqn_state = self.orchestrator.get_model_toggle_state("dqn")
cnn_state = self.orchestrator.get_model_toggle_state("cnn")
cob_rl_state = self.orchestrator.get_model_toggle_state("cob_rl")
decision_fusion_state = self.orchestrator.get_model_toggle_state("decision_fusion")
# Convert to checklist values (list with 'enabled' if True, empty list if False)
dqn_inf = ['enabled'] if dqn_state.get('inference_enabled', True) else []
dqn_trn = ['enabled'] if dqn_state.get('training_enabled', True) else []
cnn_inf = ['enabled'] if cnn_state.get('inference_enabled', True) else []
cnn_trn = ['enabled'] if cnn_state.get('training_enabled', True) else []
cob_rl_inf = ['enabled'] if cob_rl_state.get('inference_enabled', True) else []
cob_rl_trn = ['enabled'] if cob_rl_state.get('training_enabled', True) else []
decision_inf = ['enabled'] if decision_fusion_state.get('inference_enabled', True) else []
decision_trn = ['enabled'] if decision_fusion_state.get('training_enabled', True) else []
# Update dashboard state variables
self.dqn_inference_enabled = bool(dqn_inf)
self.dqn_training_enabled = bool(dqn_trn)
self.cnn_inference_enabled = bool(cnn_inf)
self.cnn_training_enabled = bool(cnn_trn)
self.cob_rl_inference_enabled = bool(cob_rl_inf)
self.cob_rl_training_enabled = bool(cob_rl_trn)
self.decision_fusion_inference_enabled = bool(decision_inf)
self.decision_fusion_training_enabled = bool(decision_trn)
logger.debug(f"Synced toggle states from orchestrator: DQN(inf:{self.dqn_inference_enabled}, trn:{self.dqn_training_enabled}), CNN(inf:{self.cnn_inference_enabled}, trn:{self.cnn_training_enabled}), COB_RL(inf:{self.cob_rl_inference_enabled}, trn:{self.cob_rl_training_enabled}), Decision_Fusion(inf:{self.decision_fusion_inference_enabled}, trn:{self.decision_fusion_training_enabled})")
return dqn_inf, dqn_trn, cnn_inf, cnn_trn, cob_rl_inf, cob_rl_trn, decision_inf, decision_trn
except Exception as e:
logger.error(f"Error syncing toggle states from orchestrator: {e}")
return [], [], [], [], [], [], [], []
"""Update cold start training mode"""
logger.debug(f"Cold start callback triggered with value: {switch_value}")
try: