new fixed dash

This commit is contained in:
Dobromir Popov 2025-05-24 11:42:02 +03:00
parent ba3d61818f
commit fb5350bb50
3 changed files with 348 additions and 86 deletions

View File

@ -37,15 +37,7 @@ cnn:
epochs: 100 epochs: 100
confidence_threshold: 0.6 confidence_threshold: 0.6
early_stopping_patience: 10 early_stopping_patience: 10
model_dir: "models/enhanced_cnn" model_dir: "models/enhanced_cnn" # Ultra-fast scalping weights (500x leverage) timeframe_importance: "1s": 0.60 # Primary scalping signal "1m": 0.20 # Short-term confirmation "1h": 0.15 # Medium-term trend "1d": 0.05 # Long-term direction (minimal)# Enhanced RL Agent Configuration
# Ultra-fast scalping weights (500x leverage)
timeframe_importance:
"1s": 0.60 # Primary scalping signal
"1m": 0.20 # Short-term confirmation
"1h": 0.15 # Medium-term trend
"1d": 0.05 # Long-term direction (minimal)
# Enhanced RL Agent Configuration
rl: rl:
state_size: 100 # Will be calculated dynamically based on features state_size: 100 # Will be calculated dynamically based on features
action_space: 3 # BUY, HOLD, SELL action_space: 3 # BUY, HOLD, SELL

View File

@ -105,9 +105,9 @@ class DataProvider:
# Convert symbol format # Convert symbol format
binance_symbol = symbol.replace('/', '').upper() binance_symbol = symbol.replace('/', '').upper()
# Convert timeframe # Convert timeframe (now includes 1s support)
timeframe_map = { timeframe_map = {
'1m': '1m', '5m': '5m', '15m': '15m', '30m': '30m', '1s': '1s', '1m': '1m', '5m': '5m', '15m': '15m', '30m': '30m',
'1h': '1h', '4h': '4h', '1d': '1d' '1h': '1h', '4h': '4h', '1d': '1d'
} }
binance_timeframe = timeframe_map.get(timeframe, '1h') binance_timeframe = timeframe_map.get(timeframe, '1h')

View File

@ -1,7 +1,11 @@
""" """
Ultra-Fast Scalping Dashboard (500x Leverage) - Fixed Version Ultra-Fast Scalping Dashboard (500x Leverage) - Real Market Data
Simplified dashboard for PnL tracking demonstration Dashboard using ONLY real market data from APIs with:
- Main 1s ETH/USDT chart (full width)
- 4 small charts: 1m ETH, 1h ETH, 1d ETH, 1s BTC
- 500 candles preloaded at startup
- Real-time updates from data provider
""" """
import asyncio import asyncio
@ -25,10 +29,10 @@ from core.enhanced_orchestrator import EnhancedTradingOrchestrator, TradingActio
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class ScalpingDashboard: class ScalpingDashboard:
"""Ultra-fast scalping dashboard optimized for 500x leverage trading""" """Real market data scalping dashboard for 500x leverage trading"""
def __init__(self, data_provider: DataProvider = None, orchestrator: EnhancedTradingOrchestrator = None): def __init__(self, data_provider: DataProvider = None, orchestrator: EnhancedTradingOrchestrator = None):
"""Initialize the scalping dashboard""" """Initialize the dashboard with real market data"""
self.config = get_config() self.config = get_config()
self.data_provider = data_provider or DataProvider() self.data_provider = data_provider or DataProvider()
self.orchestrator = orchestrator or EnhancedTradingOrchestrator(self.data_provider) self.orchestrator = orchestrator or EnhancedTradingOrchestrator(self.data_provider)
@ -44,6 +48,22 @@ class ScalpingDashboard:
'last_action': None 'last_action': None
} }
# Real market data cache - preload 500 candles for each chart
self.market_data = {
'ETH/USDT': {
'1s': None, # Main chart
'1m': None, # Small chart
'1h': None, # Small chart
'1d': None # Small chart
},
'BTC/USDT': {
'1s': None # Small chart
}
}
# Initialize real market data
self._preload_market_data()
# Create Dash app # Create Dash app
self.app = dash.Dash(__name__) self.app = dash.Dash(__name__)
@ -51,57 +71,142 @@ class ScalpingDashboard:
self._setup_layout() self._setup_layout()
self._setup_callbacks() self._setup_callbacks()
logger.info("Ultra-Fast Scalping Dashboard initialized") logger.info("Ultra-Fast Scalping Dashboard initialized with REAL MARKET DATA")
def _preload_market_data(self):
"""Preload 500 candles for each chart from real market APIs"""
logger.info("🔄 Preloading 500 candles of real market data...")
try:
# Load ETH/USDT data for main chart and small charts
self.market_data['ETH/USDT']['1s'] = self.data_provider.get_historical_data(
'ETH/USDT', '1s', limit=500
)
self.market_data['ETH/USDT']['1m'] = self.data_provider.get_historical_data(
'ETH/USDT', '1m', limit=500
)
self.market_data['ETH/USDT']['1h'] = self.data_provider.get_historical_data(
'ETH/USDT', '1h', limit=500
)
self.market_data['ETH/USDT']['1d'] = self.data_provider.get_historical_data(
'ETH/USDT', '1d', limit=500
)
# Load BTC/USDT 1s data for small chart
self.market_data['BTC/USDT']['1s'] = self.data_provider.get_historical_data(
'BTC/USDT', '1s', limit=500
)
# Log successful data loading
for symbol in self.market_data:
for timeframe, data in self.market_data[symbol].items():
if data is not None and not data.empty:
logger.info(f"✅ Loaded {len(data)} candles for {symbol} {timeframe}")
logger.info(f" Price range: ${data['close'].min():.2f} - ${data['close'].max():.2f}")
else:
logger.warning(f"⚠️ No data loaded for {symbol} {timeframe}")
logger.info("✅ Market data preload complete - ready for real-time updates")
except Exception as e:
logger.error(f"❌ Error preloading market data: {e}")
# Initialize empty DataFrames as fallback
for symbol in self.market_data:
for timeframe in self.market_data[symbol]:
self.market_data[symbol][timeframe] = pd.DataFrame()
def _setup_layout(self): def _setup_layout(self):
"""Setup the dashboard layout""" """Setup the 5-chart dashboard layout"""
self.app.layout = html.Div([ self.app.layout = html.Div([
# Header # Header with real-time metrics
html.H1("ULTRA-FAST SCALPING DASHBOARD - 500x LEVERAGE", html.Div([
html.H1("ULTRA-FAST SCALPING DASHBOARD - 500x LEVERAGE - REAL MARKET DATA",
className="text-center mb-4"), className="text-center mb-4"),
# Metrics row # Real-time metrics row
html.Div([ html.Div([
html.Div([ html.Div([
html.H3(id="live-pnl", className="text-success"), html.H3(id="live-pnl", className="text-success"),
html.P("Total P&L") html.P("Total P&L")
], className="col-md-3 text-center"), ], className="col-md-2 text-center"),
html.Div([ html.Div([
html.H3(id="win-rate", className="text-info"), html.H3(id="win-rate", className="text-info"),
html.P("Win Rate") html.P("Win Rate")
], className="col-md-3 text-center"), ], className="col-md-2 text-center"),
html.Div([ html.Div([
html.H3(id="total-trades", className="text-primary"), html.H3(id="total-trades", className="text-primary"),
html.P("Total Trades") html.P("Total Trades")
], className="col-md-3 text-center"), ], className="col-md-2 text-center"),
html.Div([ html.Div([
html.H3(id="last-action", className="text-warning"), html.H3(id="last-action", className="text-warning"),
html.P("Last Action") html.P("Last Action")
], className="col-md-3 text-center") ], className="col-md-2 text-center"),
html.Div([
html.H3(id="eth-price", className="text-white"),
html.P("ETH/USDT Live")
], className="col-md-2 text-center"),
html.Div([
html.H3(id="btc-price", className="text-white"),
html.P("BTC/USDT Live")
], className="col-md-2 text-center")
], className="row mb-4")
], className="bg-dark p-3 mb-3"),
# Main 1s ETH/USDT chart (full width)
html.Div([
html.H4("ETH/USDT 1s Real-Time Chart (Main Trading Signal)",
className="text-center mb-3"),
dcc.Graph(id="main-eth-1s-chart", style={"height": "500px"})
], className="mb-4"),
# Row of 4 small charts
html.Div([
# ETH/USDT 1m
html.Div([
html.H6("ETH/USDT 1m", className="text-center"),
dcc.Graph(id="eth-1m-chart", style={"height": "250px"})
], className="col-md-3"),
# ETH/USDT 1h
html.Div([
html.H6("ETH/USDT 1h", className="text-center"),
dcc.Graph(id="eth-1h-chart", style={"height": "250px"})
], className="col-md-3"),
# ETH/USDT 1d
html.Div([
html.H6("ETH/USDT 1d", className="text-center"),
dcc.Graph(id="eth-1d-chart", style={"height": "250px"})
], className="col-md-3"),
# BTC/USDT 1s
html.Div([
html.H6("BTC/USDT 1s", className="text-center"),
dcc.Graph(id="btc-1s-chart", style={"height": "250px"})
], className="col-md-3")
], className="row mb-4"), ], className="row mb-4"),
# Chart # Recent actions log
dcc.Graph(id="main-chart", style={"height": "400px"}),
# Actions log
html.Div([ html.Div([
html.H4("Recent Trading Actions"), html.H5("Live Trading Actions (Real Market Data)", className="text-center mb-3"),
html.Div(id="actions-log") html.Div(id="actions-log")
]), ], className="mb-4"),
# Auto-refresh # Auto-refresh for real-time updates
dcc.Interval( dcc.Interval(
id='interval-component', id='market-data-interval',
interval=100, # 100ms interval=1000, # Update every 1 second for real-time feel
n_intervals=0 n_intervals=0
) )
]) ], className="container-fluid")
def _setup_callbacks(self): def _setup_callbacks(self):
"""Setup dashboard callbacks""" """Setup dashboard callbacks with real market data"""
@self.app.callback( @self.app.callback(
[ [
@ -109,13 +214,19 @@ class ScalpingDashboard:
Output('win-rate', 'children'), Output('win-rate', 'children'),
Output('total-trades', 'children'), Output('total-trades', 'children'),
Output('last-action', 'children'), Output('last-action', 'children'),
Output('main-chart', 'figure'), Output('eth-price', 'children'),
Output('btc-price', 'children'),
Output('main-eth-1s-chart', 'figure'),
Output('eth-1m-chart', 'figure'),
Output('eth-1h-chart', 'figure'),
Output('eth-1d-chart', 'figure'),
Output('btc-1s-chart', 'figure'),
Output('actions-log', 'children') Output('actions-log', 'children')
], ],
[Input('interval-component', 'n_intervals')] [Input('market-data-interval', 'n_intervals')]
) )
def update_dashboard(n_intervals): def update_dashboard_with_real_data(n_intervals):
"""Update all dashboard components""" """Update all dashboard components with real market data"""
try: try:
# Update metrics # Update metrics
pnl = f"${self.scalping_metrics['total_pnl']:+.2f}" pnl = f"${self.scalping_metrics['total_pnl']:+.2f}"
@ -123,57 +234,207 @@ class ScalpingDashboard:
total_trades = str(self.scalping_metrics['total_trades']) total_trades = str(self.scalping_metrics['total_trades'])
last_action = self.scalping_metrics['last_action'] or "WAITING" last_action = self.scalping_metrics['last_action'] or "WAITING"
# Create simple chart # Get current prices from real market data
chart = self._create_simple_chart() eth_price = self._get_current_price('ETH/USDT')
btc_price = self._get_current_price('BTC/USDT')
# Refresh market data periodically (every 10 updates)
if n_intervals % 10 == 0:
self._refresh_market_data()
# Create charts with real market data
main_eth_chart = self._create_real_chart('ETH/USDT', '1s', main_chart=True)
eth_1m_chart = self._create_real_chart('ETH/USDT', '1m')
eth_1h_chart = self._create_real_chart('ETH/USDT', '1h')
eth_1d_chart = self._create_real_chart('ETH/USDT', '1d')
btc_1s_chart = self._create_real_chart('BTC/USDT', '1s')
# Create actions log # Create actions log
actions_log = self._create_actions_log() actions_log = self._create_actions_log()
return pnl, win_rate, total_trades, last_action, chart, actions_log return (
pnl, win_rate, total_trades, last_action, eth_price, btc_price,
main_eth_chart, eth_1m_chart, eth_1h_chart, eth_1d_chart, btc_1s_chart,
actions_log
)
except Exception as e: except Exception as e:
logger.error(f"Error updating dashboard: {e}") logger.error(f"Error updating dashboard: {e}")
return "$0.00", "0%", "0", "ERROR", {}, "System starting..." # Return safe defaults
return (
"$0.00", "0%", "0", "ERROR", "$0", "$0",
{}, {}, {}, {}, {}, "Loading real market data..."
)
def _create_simple_chart(self): def _refresh_market_data(self):
"""Create a simple price chart""" """Refresh market data from APIs"""
# Generate mock price data try:
times = [datetime.now() - timedelta(seconds=i) for i in range(100, 0, -1)] # Get latest data for each chart (last 100 candles for efficiency)
prices = [3050 + np.random.normal(0, 2) for _ in times] for symbol in self.market_data:
for timeframe in self.market_data[symbol]:
latest_data = self.data_provider.get_latest_candles(symbol, timeframe, limit=100)
if latest_data is not None and not latest_data.empty:
# Update our cache with latest data
if self.market_data[symbol][timeframe] is not None:
# Append new data and keep last 500 candles
combined = pd.concat([self.market_data[symbol][timeframe], latest_data])
combined = combined.drop_duplicates(subset=['timestamp'], keep='last')
self.market_data[symbol][timeframe] = combined.tail(500)
else:
self.market_data[symbol][timeframe] = latest_data.tail(500)
except Exception as e:
logger.warning(f"Error refreshing market data: {e}")
def _get_current_price(self, symbol: str) -> str:
"""Get current price from real market data"""
try:
data = self.market_data[symbol]['1s']
if data is not None and not data.empty:
current_price = data['close'].iloc[-1]
return f"${current_price:.2f}"
return "$0.00"
except Exception as e:
logger.warning(f"Error getting current price for {symbol}: {e}")
return "$0.00"
def _create_real_chart(self, symbol: str, timeframe: str, main_chart: bool = False):
"""Create chart using real market data"""
try:
data = self.market_data[symbol][timeframe]
if data is None or data.empty:
# Return empty chart with message
fig = go.Figure() fig = go.Figure()
fig.add_trace(go.Scatter( fig.add_annotation(
x=times, text=f"Loading real market data for {symbol} {timeframe}...",
y=prices, xref="paper", yref="paper",
mode='lines', x=0.5, y=0.5, showarrow=False,
name='ETH/USDT 1s', font=dict(size=16, color="red")
line=dict(color='green', width=2) )
fig.update_layout(
title=f"{symbol} {timeframe} - Real Market Data",
template="plotly_dark",
height=500 if main_chart else 250
)
return fig
# Create candlestick chart from real data
fig = go.Figure()
if main_chart:
# Main chart with candlesticks and volume
fig.add_trace(go.Candlestick(
x=data['timestamp'],
open=data['open'],
high=data['high'],
low=data['low'],
close=data['close'],
name=f"{symbol} {timeframe}",
increasing_line_color='#00ff88',
decreasing_line_color='#ff4444'
)) ))
# Add volume as secondary plot
fig.add_trace(go.Bar(
x=data['timestamp'],
y=data['volume'],
name="Volume",
yaxis='y2',
opacity=0.3,
marker_color='lightblue'
))
# Main chart layout
fig.update_layout( fig.update_layout(
title="ETH/USDT Ultra-Fast Chart", title=f"{symbol} {timeframe} Real-Time Market Data - Latest: ${data['close'].iloc[-1]:.2f}",
xaxis_title="Time",
yaxis_title="Price (USDT)", yaxis_title="Price (USDT)",
template="plotly_dark" yaxis2=dict(title="Volume", overlaying='y', side='right'),
template="plotly_dark",
showlegend=False,
height=500
)
# Add current price line
current_price = data['close'].iloc[-1]
fig.add_hline(
y=current_price,
line_dash="dash",
line_color="yellow",
annotation_text=f"${current_price:.2f}",
annotation_position="right"
)
else:
# Small chart - simple line chart
price_change = ((data['close'].iloc[-1] - data['close'].iloc[0]) / data['close'].iloc[0]) * 100
line_color = '#00ff88' if price_change >= 0 else '#ff4444'
fig.add_trace(go.Scatter(
x=data['timestamp'],
y=data['close'],
mode='lines',
name=f"{symbol} {timeframe}",
line=dict(color=line_color, width=2)
))
# Small chart layout
fig.update_layout(
template="plotly_dark",
showlegend=False,
margin=dict(l=10, r=10, t=30, b=10),
height=250,
title=f"{symbol} {timeframe}: ${data['close'].iloc[-1]:.2f}"
)
# Add price change annotation
change_color = "green" if price_change >= 0 else "red"
fig.add_annotation(
text=f"{price_change:+.2f}%",
xref="paper", yref="paper",
x=0.95, y=0.95,
showarrow=False,
font=dict(color=change_color, size=12, weight="bold"),
bgcolor="rgba(0,0,0,0.7)"
) )
return fig return fig
except Exception as e:
logger.error(f"Error creating chart for {symbol} {timeframe}: {e}")
# Return error chart
fig = go.Figure()
fig.add_annotation(
text=f"Error loading {symbol} {timeframe}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=14, color="red")
)
fig.update_layout(
template="plotly_dark",
height=500 if main_chart else 250
)
return fig
def _create_actions_log(self): def _create_actions_log(self):
"""Create actions log""" """Create trading actions log"""
if not self.recent_decisions: if not self.recent_decisions:
return html.P("No recent actions", className="text-muted") return html.P("Waiting for trading signals from real market data...", className="text-muted text-center")
log_items = [] log_items = []
for action in self.recent_decisions[-5:]: for action in self.recent_decisions[-5:]: # Show last 5 actions
log_items.append( log_items.append(
html.P(f"{action.action} {action.symbol} @ ${action.price:.2f}") html.P(
f"🔥 {action.action} {action.symbol} @ ${action.price:.2f} "
f"(Confidence: {action.confidence:.1%}) - Real Market Data",
className="text-center mb-1"
)
) )
return html.Div(log_items) return html.Div(log_items)
def add_trading_decision(self, decision: TradingAction): def add_trading_decision(self, decision: TradingAction):
"""Add a new trading decision""" """Add a new trading decision based on real market data"""
self.recent_decisions.append(decision) self.recent_decisions.append(decision)
if len(self.recent_decisions) > 50: if len(self.recent_decisions) > 50:
self.recent_decisions.pop(0) self.recent_decisions.pop(0)
@ -181,11 +442,20 @@ class ScalpingDashboard:
self.scalping_metrics['total_trades'] += 1 self.scalping_metrics['total_trades'] += 1
self.scalping_metrics['last_action'] = f"{decision.action} {decision.symbol}" self.scalping_metrics['last_action'] = f"{decision.action} {decision.symbol}"
logger.info(f"📊 Added real market trading decision: {decision.action} {decision.symbol} @ ${decision.price:.2f}")
def run(self, host: str = '127.0.0.1', port: int = 8050, debug: bool = False): def run(self, host: str = '127.0.0.1', port: int = 8050, debug: bool = False):
"""Run the dashboard""" """Run the real market data dashboard"""
logger.info(f"Starting Dashboard at http://{host}:{port}") logger.info(f"🚀 Starting Real Market Data Dashboard at http://{host}:{port}")
self.app.run_server(host=host, port=port, debug=debug) logger.info("📊 Dashboard Features:")
logger.info(" • Main 1s ETH/USDT chart with real market data")
logger.info(" • 4 small charts: 1m/1h/1d ETH + 1s BTC")
logger.info(" • 500 candles preloaded from Binance API")
logger.info(" • Real-time updates every second")
logger.info(" • NO GENERATED DATA - 100% real market feeds")
self.app.run(host=host, port=port, debug=debug)
def create_scalping_dashboard(data_provider=None, orchestrator=None): def create_scalping_dashboard(data_provider=None, orchestrator=None):
"""Create dashboard instance""" """Create dashboard instance with real market data"""
return ScalpingDashboard(data_provider, orchestrator) return ScalpingDashboard(data_provider, orchestrator)