checkpoints
This commit is contained in:
parent
46aee31942
commit
f7f10bc17c
@ -14,12 +14,19 @@ import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
from datetime import datetime
|
||||
|
||||
# --- Directories for saving models ---
|
||||
LAST_DIR = os.path.join("models", "last")
|
||||
BEST_DIR = os.path.join("models", "best")
|
||||
os.makedirs(LAST_DIR, exist_ok=True)
|
||||
os.makedirs(BEST_DIR, exist_ok=True)
|
||||
|
||||
CACHE_FILE = "candles_cache.json"
|
||||
|
||||
# -------------------------------------
|
||||
# Utility functions for caching candles to file
|
||||
# -------------------------------------
|
||||
CACHE_FILE = "candles_cache.json"
|
||||
|
||||
def load_candles_cache(filename):
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
@ -38,6 +45,81 @@ def save_candles_cache(filename, candles):
|
||||
except Exception as e:
|
||||
print("Error saving cache file:", e)
|
||||
|
||||
# -------------------------------------
|
||||
# Functions for handling checkpoints
|
||||
# -------------------------------------
|
||||
def maintain_checkpoint_directory(directory, max_files=10):
|
||||
"""Keep only the most recent max_files in a given directory based on modification time."""
|
||||
files = os.listdir(directory)
|
||||
if len(files) > max_files:
|
||||
full_paths = [os.path.join(directory, f) for f in files]
|
||||
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
||||
# Remove the oldest files
|
||||
for f in full_paths[: len(files) - max_files]:
|
||||
os.remove(f)
|
||||
|
||||
def get_best_models(directory):
|
||||
"""Return a list of (reward, filename) for files in the best folder.
|
||||
Expecting filenames like: best_{reward:.4f}_epoch_{epoch}_{timestamp}.pt"""
|
||||
best_files = []
|
||||
for file in os.listdir(directory):
|
||||
parts = file.split("_")
|
||||
try:
|
||||
# parts[1] should be reward
|
||||
r = float(parts[1])
|
||||
best_files.append((r, file))
|
||||
except Exception:
|
||||
continue
|
||||
return best_files
|
||||
|
||||
def save_checkpoint(model, epoch, reward, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
||||
"""Save the model state always to the last_dir and conditionally to best_dir if reward is high enough."""
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
||||
last_path = os.path.join(last_dir, last_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"reward": reward,
|
||||
"model_state_dict": model.state_dict()
|
||||
}, last_path)
|
||||
# Keep only last 10 models in last_dir.
|
||||
maintain_checkpoint_directory(last_dir, max_files=10)
|
||||
|
||||
# Check the best folder – if fewer than 10, simply add;
|
||||
# Otherwise, add only if reward is higher than the lowest reward in best.
|
||||
best_models = get_best_models(best_dir)
|
||||
add_to_best = False
|
||||
if len(best_models) < 10:
|
||||
add_to_best = True
|
||||
else:
|
||||
min_reward, min_file = min(best_models, key=lambda x: x[0])
|
||||
if reward > min_reward:
|
||||
add_to_best = True
|
||||
# Remove the worst checkpoint.
|
||||
os.remove(os.path.join(best_dir, min_file))
|
||||
if add_to_best:
|
||||
best_filename = f"best_{reward:.4f}_epoch_{epoch}_{timestamp}.pt"
|
||||
best_path = os.path.join(best_dir, best_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"reward": reward,
|
||||
"model_state_dict": model.state_dict()
|
||||
}, best_path)
|
||||
maintain_checkpoint_directory(best_dir, max_files=10)
|
||||
print(f"Saved checkpoint for epoch {epoch} with reward {reward:.4f}")
|
||||
|
||||
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||
"""Load the best checkpoint (with highest reward) from the best directory if available."""
|
||||
best_models = get_best_models(best_dir)
|
||||
if not best_models:
|
||||
return None
|
||||
best_reward, best_file = max(best_models, key=lambda x: x[0])
|
||||
path = os.path.join(best_dir, best_file)
|
||||
print(f"Loading best model from checkpoint: {best_file} with reward {best_reward:.4f}")
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
return checkpoint
|
||||
|
||||
# -------------------------------------
|
||||
# Neural Network Architecture Definition
|
||||
# -------------------------------------
|
||||
@ -79,7 +161,7 @@ def compute_indicators(candle, additional_data):
|
||||
"""
|
||||
Combine OHLCV candle data with extra indicator information.
|
||||
Base features: open, high, low, close, volume.
|
||||
Additional channels (e.g. simulated sentiment) are appended.
|
||||
Additional channels (e.g., simulated sentiment) are appended.
|
||||
"""
|
||||
features = [
|
||||
candle.get('open', 0.0),
|
||||
@ -105,7 +187,7 @@ class ContinuousRLAgent:
|
||||
self.gamma = gamma
|
||||
|
||||
def act(self, state, epsilon=0.1):
|
||||
# ε-greedy: with probability epsilon take a random action
|
||||
# ε-greedy: choose random action with probability epsilon.
|
||||
if np.random.rand() < epsilon:
|
||||
return np.random.randint(0, 3)
|
||||
state_tensor = torch.from_numpy(np.array(state, dtype=np.float32)).unsqueeze(0)
|
||||
@ -115,12 +197,12 @@ class ContinuousRLAgent:
|
||||
return action
|
||||
|
||||
def train_step(self):
|
||||
# Only train if we have enough samples
|
||||
# Only train if we have enough samples.
|
||||
if len(self.replay_buffer) < self.batch_size:
|
||||
return
|
||||
|
||||
# Convert lists to numpy arrays in one shot for performance
|
||||
batch = self.replay_buffer.sample(self.batch_size)
|
||||
# Unpack the batch; each experience is (state, action, reward, next_state, done)
|
||||
states, actions, rewards, next_states, dones = zip(*batch)
|
||||
states_tensor = torch.from_numpy(np.array(states, dtype=np.float32))
|
||||
actions_tensor = torch.tensor(actions, dtype=torch.int64)
|
||||
@ -128,15 +210,12 @@ class ContinuousRLAgent:
|
||||
next_states_tensor = torch.from_numpy(np.array(next_states, dtype=np.float32))
|
||||
dones_tensor = torch.tensor(dones, dtype=torch.float32).unsqueeze(1)
|
||||
|
||||
# Current Q-value for the chosen actions
|
||||
Q_values = self.model(states_tensor)
|
||||
current_Q = Q_values.gather(1, actions_tensor.unsqueeze(1))
|
||||
|
||||
with torch.no_grad():
|
||||
next_Q_values = self.model(next_states_tensor)
|
||||
max_next_Q = next_Q_values.max(1)[0].unsqueeze(1)
|
||||
target = rewards_tensor + self.gamma * max_next_Q * (1.0 - dones_tensor)
|
||||
|
||||
loss = self.loss_fn(current_Q, target)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
@ -148,7 +227,7 @@ class ContinuousRLAgent:
|
||||
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||||
"""
|
||||
Fetch historical OHLCV data for the given symbol and timeframe.
|
||||
The 'since' and 'end_time' parameters are in milliseconds.
|
||||
"since" and "end_time" are in milliseconds.
|
||||
"""
|
||||
candles = []
|
||||
since_ms = since
|
||||
@ -181,7 +260,6 @@ async def get_cached_or_fetch_data(exchange, symbol, timeframe, since, end_time,
|
||||
cached_candles = load_candles_cache(cache_file)
|
||||
if cached_candles:
|
||||
last_ts = cached_candles[-1]['timestamp']
|
||||
# If the cached candles do not extend to 'end_time', fetch new ones.
|
||||
if last_ts < end_time:
|
||||
print("Fetching new candles to update cache...")
|
||||
new_candles = await fetch_historical_data(exchange, symbol, timeframe, last_ts + 1, end_time, batch_size)
|
||||
@ -209,7 +287,6 @@ class BacktestEnvironment:
|
||||
|
||||
def get_state(self, index):
|
||||
candle = self.candles[index]
|
||||
# Simulate additional sentiment features.
|
||||
sentiment = {
|
||||
'sentiment_score': np.random.rand(),
|
||||
'news_volume': np.random.rand(),
|
||||
@ -220,10 +297,9 @@ class BacktestEnvironment:
|
||||
def step(self, action):
|
||||
"""
|
||||
Simulate a trading step.
|
||||
- If not in a position and action is BUY (2), buy at the next candle's open.
|
||||
- If in a position and action is SELL (0), sell at the next candle's open and compute reward.
|
||||
- Otherwise, no trade is executed.
|
||||
Returns: (state, reward, next_state, done)
|
||||
- If not in a position and action is BUY (2), enter a long position at the next candle's open.
|
||||
- If in a position and action is SELL (0), close the position at the next candle's open.
|
||||
Returns: (current_state, reward, next_state, done)
|
||||
"""
|
||||
if self.current_index >= len(self.candles) - 1:
|
||||
return self.get_state(self.current_index), 0.0, None, True
|
||||
@ -237,14 +313,15 @@ class BacktestEnvironment:
|
||||
|
||||
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||
if self.position is None:
|
||||
if action == 2: # BUY: enter long position at next candle's open.
|
||||
if action == 2: # BUY signal:
|
||||
entry_price = next_candle['open']
|
||||
self.position = {'entry_price': entry_price, 'entry_index': self.current_index}
|
||||
else:
|
||||
if action == 0: # SELL: close long position.
|
||||
if action == 0: # SELL signal:
|
||||
sell_price = next_candle['open']
|
||||
reward = sell_price - self.position['entry_price']
|
||||
self.position = None
|
||||
|
||||
self.current_index = next_index
|
||||
done = (self.current_index >= len(self.candles) - 1)
|
||||
return current_state, reward, next_state, done
|
||||
@ -254,11 +331,11 @@ class BacktestEnvironment:
|
||||
# -------------------------------------
|
||||
def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
|
||||
"""
|
||||
For each epoch, run through the entire historical data.
|
||||
At each step, choose an action using ε‑greedy policy, simulate a trade,
|
||||
store the experience (state, action, reward, next_state, done), and update the model.
|
||||
For each epoch, run through the entire historical episode.
|
||||
At each step, pick an action (using ε-greedy), simulate a trade, store the experience,
|
||||
and update the model. Then log the cumulative reward and save checkpoints.
|
||||
"""
|
||||
for epoch in range(num_epochs):
|
||||
for epoch in range(1, num_epochs + 1):
|
||||
state = env.reset()
|
||||
done = False
|
||||
total_reward = 0.0
|
||||
@ -269,12 +346,14 @@ def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
|
||||
state, reward, next_state, done = env.step(action)
|
||||
if next_state is None:
|
||||
next_state = np.zeros_like(prev_state)
|
||||
# Store the experience including the action taken.
|
||||
# Save the experience (state, action, reward, next_state, done)
|
||||
rl_agent.replay_buffer.add((prev_state, action, reward, next_state, done))
|
||||
rl_agent.train_step()
|
||||
total_reward += reward
|
||||
steps += 1
|
||||
print(f"Epoch {epoch+1}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||
print(f"Epoch {epoch}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||
# Save a checkpoint after the epoch.
|
||||
save_checkpoint(rl_agent.model, epoch, total_reward, LAST_DIR, BEST_DIR)
|
||||
|
||||
# -------------------------------------
|
||||
# Main Asynchronous Function for Backtest Training
|
||||
@ -285,7 +364,7 @@ async def main_backtest():
|
||||
timeframe = '1m'
|
||||
now = int(time.time() * 1000)
|
||||
one_day_ms = 24 * 60 * 60 * 1000
|
||||
# Fetch a 1-day period from 2 days ago until 1 day ago.
|
||||
# For example, fetch a 1-day period from 2 days ago until 1 day ago.
|
||||
since = now - one_day_ms * 2
|
||||
end_time = now - one_day_ms
|
||||
|
||||
@ -305,27 +384,30 @@ async def main_backtest():
|
||||
await exchange.close()
|
||||
return
|
||||
|
||||
# Save/Update cache file.
|
||||
# Save updated cache.
|
||||
save_candles_cache(CACHE_FILE, candles)
|
||||
|
||||
# Initialize the backtest environment with the candles.
|
||||
# Initialize backtest environment.
|
||||
env = BacktestEnvironment(candles)
|
||||
|
||||
# Model dimensions: 5 base OHLCV features + 3 simulated sentiment features = 8.
|
||||
# Model dimensions: 5 (OHLCV) + 3 (sentiment) = 8.
|
||||
input_dim = 8
|
||||
hidden_dim = 128
|
||||
output_dim = 3 # SELL, HOLD, BUY
|
||||
output_dim = 3 # SELL, HOLD, BUY.
|
||||
|
||||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||
replay_buffer = ReplayBuffer(capacity=10000)
|
||||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32, gamma=0.99)
|
||||
|
||||
# At training start, try loading a best checkpoint (if available).
|
||||
load_best_checkpoint(model, BEST_DIR)
|
||||
|
||||
# Run training over historical data.
|
||||
num_epochs = 10 # Adjust as needed.
|
||||
num_epochs = 10 # Change as needed.
|
||||
train_on_historical_data(env, rl_agent, num_epochs=num_epochs, epsilon=0.1)
|
||||
|
||||
# Optionally, perform a final test run (without exploration) to check cumulative profit.
|
||||
# Final simulation (without exploration) to check cumulative profit.
|
||||
state = env.reset()
|
||||
done = False
|
||||
cumulative_reward = 0.0
|
||||
|
Loading…
x
Reference in New Issue
Block a user