wip
This commit is contained in:
parent
c6b4830daf
commit
f5b1692a82
215
crypto/brian/index-deep-new.py
Normal file
215
crypto/brian/index-deep-new.py
Normal file
@ -0,0 +1,215 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import sys
|
||||||
|
import asyncio
|
||||||
|
if sys.platform == 'win32':
|
||||||
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||||
|
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from collections import deque
|
||||||
|
from datetime import datetime
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import ccxt.async_support as ccxt
|
||||||
|
import argparse
|
||||||
|
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
|
||||||
|
# --- New Constants ---
|
||||||
|
NUM_TIMEFRAMES = 5 # Example: ["1m", "5m", "15m", "1h", "1d"]
|
||||||
|
NUM_INDICATORS = 20 # Example: 20 technical indicators
|
||||||
|
FEATURES_PER_CHANNEL = 7 # HLOC + SMA_close + SMA_volume
|
||||||
|
|
||||||
|
# --- Positional Encoding Module ---
|
||||||
|
class PositionalEncoding(nn.Module):
|
||||||
|
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
||||||
|
super().__init__()
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
position = torch.arange(max_len).unsqueeze(1)
|
||||||
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
||||||
|
pe = torch.zeros(max_len, 1, d_model)
|
||||||
|
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
||||||
|
self.register_buffer('pe', pe)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x + self.pe[:x.size(0)]
|
||||||
|
return self.dropout(x)
|
||||||
|
|
||||||
|
# --- Enhanced Transformer Model ---
|
||||||
|
class TradingModel(nn.Module):
|
||||||
|
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
||||||
|
super().__init__()
|
||||||
|
self.channel_branches = nn.ModuleList([
|
||||||
|
nn.Sequential(
|
||||||
|
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
||||||
|
nn.LayerNorm(hidden_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Dropout(0.1)
|
||||||
|
) for _ in range(num_channels)
|
||||||
|
])
|
||||||
|
|
||||||
|
self.timeframe_embed = nn.Embedding(num_timeframes, hidden_dim)
|
||||||
|
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||||
|
|
||||||
|
# Transformer
|
||||||
|
encoder_layers = TransformerEncoderLayer(
|
||||||
|
d_model=hidden_dim, nhead=4, dim_feedforward=512,
|
||||||
|
dropout=0.1, activation='gelu', batch_first=False
|
||||||
|
)
|
||||||
|
self.transformer = TransformerEncoder(encoder_layers, num_layers=2)
|
||||||
|
|
||||||
|
# Attention Pooling
|
||||||
|
self.attn_pool = nn.Linear(hidden_dim, 1)
|
||||||
|
|
||||||
|
# Prediction Heads
|
||||||
|
self.high_pred = nn.Sequential(
|
||||||
|
nn.Linear(hidden_dim, hidden_dim//2),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(hidden_dim//2, 1)
|
||||||
|
)
|
||||||
|
self.low_pred = nn.Sequential(
|
||||||
|
nn.Linear(hidden_dim, hidden_dim//2),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(hidden_dim//2, 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x, timeframe_ids):
|
||||||
|
# x shape: [batch_size, num_channels, features]
|
||||||
|
batch_size, num_channels, _ = x.shape
|
||||||
|
|
||||||
|
# Process each channel
|
||||||
|
channel_outs = []
|
||||||
|
for i in range(num_channels):
|
||||||
|
channel_out = self.channel_branches[i](x[:,i,:])
|
||||||
|
channel_outs.append(channel_out)
|
||||||
|
|
||||||
|
# Stack and add embeddings
|
||||||
|
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
|
||||||
|
stacked = stacked.permute(1, 0, 2) # [channels, batch, hidden]
|
||||||
|
|
||||||
|
# Add timeframe embeddings
|
||||||
|
tf_embeds = self.timeframe_embed(timeframe_ids).unsqueeze(1)
|
||||||
|
stacked = stacked + tf_embeds
|
||||||
|
|
||||||
|
# Transformer
|
||||||
|
src_mask = torch.triu(torch.ones(stacked.size(0), stacked.size(0)), diagonal=1).bool()
|
||||||
|
transformer_out = self.transformer(stacked, src_mask=src_mask.to(x.device))
|
||||||
|
|
||||||
|
# Attention Pool
|
||||||
|
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=0)
|
||||||
|
aggregated = (transformer_out * attn_weights).sum(dim=0)
|
||||||
|
|
||||||
|
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
|
||||||
|
|
||||||
|
# --- Enhanced Data Processing ---
|
||||||
|
class BacktestEnvironment:
|
||||||
|
def get_state(self, index):
|
||||||
|
"""Returns shape [num_channels, FEATURES_PER_CHANNEL]"""
|
||||||
|
state_features = []
|
||||||
|
base_ts = self.candles_dict[self.base_tf][index]["timestamp"]
|
||||||
|
|
||||||
|
# Timeframe channels
|
||||||
|
for tf in self.timeframes:
|
||||||
|
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
||||||
|
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
||||||
|
state_features.append(features)
|
||||||
|
|
||||||
|
# Indicator channels (placeholder - implement your indicators)
|
||||||
|
for _ in range(NUM_INDICATORS):
|
||||||
|
# Add indicator calculation here
|
||||||
|
state_features.append([0.0]*FEATURES_PER_CHANNEL)
|
||||||
|
|
||||||
|
return np.array(state_features, dtype=np.float32)
|
||||||
|
|
||||||
|
# --- Enhanced Training Loop ---
|
||||||
|
def train_on_historical_data(env, model, device, args):
|
||||||
|
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
||||||
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
|
||||||
|
|
||||||
|
for epoch in range(args.epochs):
|
||||||
|
state = env.reset()
|
||||||
|
total_loss = 0
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# Prepare batch
|
||||||
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||||
|
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
||||||
|
|
||||||
|
# Forward pass
|
||||||
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||||
|
|
||||||
|
# Get targets from next candle
|
||||||
|
_, _, next_state, done, actual_high, actual_low = env.step(None) # Dummy action
|
||||||
|
target_high = torch.FloatTensor([actual_high]).to(device)
|
||||||
|
target_low = torch.FloatTensor([actual_low]).to(device)
|
||||||
|
|
||||||
|
# Custom loss
|
||||||
|
high_loss = torch.abs(pred_high - target_high) * 2
|
||||||
|
low_loss = torch.abs(pred_low - target_low) * 2
|
||||||
|
loss = (high_loss + low_loss).mean()
|
||||||
|
|
||||||
|
# Backprop
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
total_loss += loss.item()
|
||||||
|
|
||||||
|
if done:
|
||||||
|
break
|
||||||
|
state = next_state
|
||||||
|
|
||||||
|
scheduler.step()
|
||||||
|
print(f"Epoch {epoch+1} Loss: {total_loss/len(env):.4f}")
|
||||||
|
save_checkpoint(model, epoch, total_loss)
|
||||||
|
|
||||||
|
# --- Mode Handling ---
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train')
|
||||||
|
parser.add_argument('--epochs', type=int, default=100)
|
||||||
|
parser.add_argument('--lr', type=float, default=3e-4)
|
||||||
|
parser.add_argument('--threshold', type=float, default=0.005)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
args = parse_args()
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
# Initialize model
|
||||||
|
model = TradingModel(
|
||||||
|
num_channels=NUM_TIMEFRAMES+NUM_INDICATORS,
|
||||||
|
num_timeframes=NUM_TIMEFRAMES
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
if args.mode == 'train':
|
||||||
|
# Initialize environment and train
|
||||||
|
env = BacktestEnvironment(...)
|
||||||
|
train_on_historical_data(env, model, device, args)
|
||||||
|
elif args.mode == 'live':
|
||||||
|
# Load model and connect to live data
|
||||||
|
load_best_checkpoint(model)
|
||||||
|
while True:
|
||||||
|
# Process live data
|
||||||
|
# Make predictions and execute trades
|
||||||
|
await asyncio.sleep(1)
|
||||||
|
elif args.mode == 'inference':
|
||||||
|
# Load model and run inference
|
||||||
|
load_best_checkpoint(model)
|
||||||
|
# Generate signals without training
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
488
crypto/brian/index.py
Normal file
488
crypto/brian/index.py
Normal file
@ -0,0 +1,488 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import sys
|
||||||
|
import asyncio
|
||||||
|
if sys.platform == 'win32':
|
||||||
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
import ccxt.async_support as ccxt
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
import numpy as np
|
||||||
|
from collections import deque
|
||||||
|
from datetime import datetime
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# --- Directories for saving models ---
|
||||||
|
LAST_DIR = os.path.join("models", "last")
|
||||||
|
BEST_DIR = os.path.join("models", "best")
|
||||||
|
os.makedirs(LAST_DIR, exist_ok=True)
|
||||||
|
os.makedirs(BEST_DIR, exist_ok=True)
|
||||||
|
|
||||||
|
CACHE_FILE = "candles_cache.json"
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Utility functions for caching candles to file
|
||||||
|
# -------------------------------------
|
||||||
|
def load_candles_cache(filename):
|
||||||
|
if os.path.exists(filename):
|
||||||
|
try:
|
||||||
|
with open(filename, "r") as f:
|
||||||
|
data = json.load(f)
|
||||||
|
print(f"Loaded cached data from {filename}.")
|
||||||
|
return data
|
||||||
|
except Exception as e:
|
||||||
|
print("Error reading cache file:", e)
|
||||||
|
return {}
|
||||||
|
|
||||||
|
def save_candles_cache(filename, candles_dict):
|
||||||
|
try:
|
||||||
|
with open(filename, "w") as f:
|
||||||
|
json.dump(candles_dict, f)
|
||||||
|
except Exception as e:
|
||||||
|
print("Error saving cache file:", e)
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Checkpoint Functions (same as before)
|
||||||
|
# -------------------------------------
|
||||||
|
def maintain_checkpoint_directory(directory, max_files=10):
|
||||||
|
files = os.listdir(directory)
|
||||||
|
if len(files) > max_files:
|
||||||
|
full_paths = [os.path.join(directory, f) for f in files]
|
||||||
|
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
||||||
|
for f in full_paths[: len(files) - max_files]:
|
||||||
|
os.remove(f)
|
||||||
|
|
||||||
|
def get_best_models(directory):
|
||||||
|
best_files = []
|
||||||
|
for file in os.listdir(directory):
|
||||||
|
parts = file.split("_")
|
||||||
|
try:
|
||||||
|
r = float(parts[1])
|
||||||
|
best_files.append((r, file))
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
|
return best_files
|
||||||
|
|
||||||
|
def save_checkpoint(model, epoch, reward, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
||||||
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
|
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
||||||
|
last_path = os.path.join(last_dir, last_filename)
|
||||||
|
torch.save({
|
||||||
|
"epoch": epoch,
|
||||||
|
"reward": reward,
|
||||||
|
"model_state_dict": model.state_dict()
|
||||||
|
}, last_path)
|
||||||
|
maintain_checkpoint_directory(last_dir, max_files=10)
|
||||||
|
|
||||||
|
best_models = get_best_models(best_dir)
|
||||||
|
add_to_best = False
|
||||||
|
if len(best_models) < 10:
|
||||||
|
add_to_best = True
|
||||||
|
else:
|
||||||
|
min_reward, min_file = min(best_models, key=lambda x: x[0])
|
||||||
|
if reward > min_reward:
|
||||||
|
add_to_best = True
|
||||||
|
os.remove(os.path.join(best_dir, min_file))
|
||||||
|
if add_to_best:
|
||||||
|
best_filename = f"best_{reward:.4f}_epoch_{epoch}_{timestamp}.pt"
|
||||||
|
best_path = os.path.join(best_dir, best_filename)
|
||||||
|
torch.save({
|
||||||
|
"epoch": epoch,
|
||||||
|
"reward": reward,
|
||||||
|
"model_state_dict": model.state_dict()
|
||||||
|
}, best_path)
|
||||||
|
maintain_checkpoint_directory(best_dir, max_files=10)
|
||||||
|
print(f"Saved checkpoint for epoch {epoch} with reward {reward:.4f}")
|
||||||
|
|
||||||
|
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||||
|
best_models = get_best_models(best_dir)
|
||||||
|
if not best_models:
|
||||||
|
return None
|
||||||
|
best_reward, best_file = max(best_models, key=lambda x: x[0])
|
||||||
|
path = os.path.join(best_dir, best_file)
|
||||||
|
print(f"Loading best model from checkpoint: {best_file} with reward {best_reward:.4f}")
|
||||||
|
checkpoint = torch.load(path)
|
||||||
|
model.load_state_dict(checkpoint["model_state_dict"])
|
||||||
|
return checkpoint
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Technical Indicator Helper Functions
|
||||||
|
# -------------------------------------
|
||||||
|
def compute_sma(candles_list, index, period=10):
|
||||||
|
start = max(0, index - period + 1)
|
||||||
|
values = [candle["close"] for candle in candles_list[start:index+1]]
|
||||||
|
return sum(values) / len(values) if values else 0.0
|
||||||
|
|
||||||
|
def compute_sma_volume(candles_list, index, period=10):
|
||||||
|
start = max(0, index - period + 1)
|
||||||
|
values = [candle["volume"] for candle in candles_list[start:index+1]]
|
||||||
|
return sum(values) / len(values) if values else 0.0
|
||||||
|
|
||||||
|
def get_aligned_candle_with_index(candles_list, target_ts):
|
||||||
|
"""Find the candle in the list whose timestamp is the largest that is <= target_ts."""
|
||||||
|
best_idx = 0
|
||||||
|
for i, candle in enumerate(candles_list):
|
||||||
|
if candle["timestamp"] <= target_ts:
|
||||||
|
best_idx = i
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
return best_idx, candles_list[best_idx]
|
||||||
|
|
||||||
|
def get_features_for_tf(candles_list, index, period=10):
|
||||||
|
"""Return a vector of 7 features: open, high, low, close, volume, sma_close, sma_volume."""
|
||||||
|
candle = candles_list[index]
|
||||||
|
f_open = candle["open"]
|
||||||
|
f_high = candle["high"]
|
||||||
|
f_low = candle["low"]
|
||||||
|
f_close = candle["close"]
|
||||||
|
f_volume = candle["volume"]
|
||||||
|
sma_close = compute_sma(candles_list, index, period)
|
||||||
|
sma_volume = compute_sma_volume(candles_list, index, period)
|
||||||
|
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Neural Network Architecture Definition
|
||||||
|
# -------------------------------------
|
||||||
|
class TradingModel(nn.Module):
|
||||||
|
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||||
|
super(TradingModel, self).__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(input_dim, hidden_dim),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_dim, hidden_dim),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_dim, output_dim)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Replay Buffer for Experience Storage
|
||||||
|
# -------------------------------------
|
||||||
|
class ReplayBuffer:
|
||||||
|
def __init__(self, capacity=10000):
|
||||||
|
self.buffer = deque(maxlen=capacity)
|
||||||
|
|
||||||
|
def add(self, experience):
|
||||||
|
self.buffer.append(experience)
|
||||||
|
|
||||||
|
def sample(self, batch_size):
|
||||||
|
indices = np.random.choice(len(self.buffer), size=batch_size, replace=False)
|
||||||
|
return [self.buffer[i] for i in indices]
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.buffer)
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# RL Agent with Q-Learning and Epsilon-Greedy Exploration
|
||||||
|
# -------------------------------------
|
||||||
|
class ContinuousRLAgent:
|
||||||
|
def __init__(self, model, optimizer, replay_buffer, batch_size=32, gamma=0.99):
|
||||||
|
self.model = model
|
||||||
|
self.optimizer = optimizer
|
||||||
|
self.replay_buffer = replay_buffer
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.loss_fn = nn.MSELoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
|
||||||
|
def act(self, state, epsilon=0.1):
|
||||||
|
if np.random.rand() < epsilon:
|
||||||
|
return np.random.randint(0, 3)
|
||||||
|
state_tensor = torch.from_numpy(np.array(state, dtype=np.float32)).unsqueeze(0)
|
||||||
|
with torch.no_grad():
|
||||||
|
output = self.model(state_tensor)
|
||||||
|
return torch.argmax(output, dim=1).item()
|
||||||
|
|
||||||
|
def train_step(self):
|
||||||
|
if len(self.replay_buffer) < self.batch_size:
|
||||||
|
return
|
||||||
|
|
||||||
|
batch = self.replay_buffer.sample(self.batch_size)
|
||||||
|
states, actions, rewards, next_states, dones = zip(*batch)
|
||||||
|
states_tensor = torch.from_numpy(np.array(states, dtype=np.float32))
|
||||||
|
actions_tensor = torch.tensor(actions, dtype=torch.int64)
|
||||||
|
rewards_tensor = torch.from_numpy(np.array(rewards, dtype=np.float32)).unsqueeze(1)
|
||||||
|
next_states_tensor = torch.from_numpy(np.array(next_states, dtype=np.float32))
|
||||||
|
dones_tensor = torch.tensor(dones, dtype=torch.float32).unsqueeze(1)
|
||||||
|
|
||||||
|
Q_values = self.model(states_tensor)
|
||||||
|
current_Q = Q_values.gather(1, actions_tensor.unsqueeze(1))
|
||||||
|
with torch.no_grad():
|
||||||
|
next_Q_values = self.model(next_states_tensor)
|
||||||
|
max_next_Q = next_Q_values.max(1)[0].unsqueeze(1)
|
||||||
|
target = rewards_tensor + self.gamma * max_next_Q * (1.0 - dones_tensor)
|
||||||
|
loss = self.loss_fn(current_Q, target)
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Historical Data Fetching Function (for a given timeframe)
|
||||||
|
# -------------------------------------
|
||||||
|
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||||||
|
candles = []
|
||||||
|
since_ms = since
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error fetching historical data for {timeframe}:", e)
|
||||||
|
break
|
||||||
|
if not batch:
|
||||||
|
break
|
||||||
|
for c in batch:
|
||||||
|
candle_dict = {
|
||||||
|
'timestamp': c[0],
|
||||||
|
'open': c[1],
|
||||||
|
'high': c[2],
|
||||||
|
'low': c[3],
|
||||||
|
'close': c[4],
|
||||||
|
'volume': c[5]
|
||||||
|
}
|
||||||
|
candles.append(candle_dict)
|
||||||
|
last_timestamp = batch[-1][0]
|
||||||
|
if last_timestamp >= end_time:
|
||||||
|
break
|
||||||
|
since_ms = last_timestamp + 1
|
||||||
|
print(f"Fetched {len(candles)} candles for timeframe {timeframe}.")
|
||||||
|
return candles
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Backtest Environment with Multi-Timeframe State
|
||||||
|
# -------------------------------------
|
||||||
|
class BacktestEnvironment:
|
||||||
|
def __init__(self, candles_dict, base_tf="1m", timeframes=None):
|
||||||
|
self.candles_dict = candles_dict # dict of timeframe: candles_list
|
||||||
|
self.base_tf = base_tf
|
||||||
|
if timeframes is None:
|
||||||
|
self.timeframes = [base_tf] # fallback to single timeframe
|
||||||
|
else:
|
||||||
|
self.timeframes = timeframes
|
||||||
|
self.trade_history = [] # record of closed trades
|
||||||
|
self.current_index = 0 # index on base_tf candles
|
||||||
|
self.position = None # active position record
|
||||||
|
|
||||||
|
def reset(self, clear_trade_history=True):
|
||||||
|
self.current_index = 0
|
||||||
|
self.position = None
|
||||||
|
if clear_trade_history:
|
||||||
|
self.trade_history = []
|
||||||
|
return self.get_state(self.current_index)
|
||||||
|
|
||||||
|
def get_state(self, index):
|
||||||
|
"""Construct the state as the concatenated features of all timeframes.
|
||||||
|
For each timeframe, find the aligned candle for the base timeframe’s timestamp."""
|
||||||
|
state_features = []
|
||||||
|
base_candle = self.candles_dict[self.base_tf][index]
|
||||||
|
base_ts = base_candle["timestamp"]
|
||||||
|
for tf in self.timeframes:
|
||||||
|
candles_list = self.candles_dict[tf]
|
||||||
|
# Get the candle from this timeframe that is closest to (and <=) base_ts.
|
||||||
|
aligned_index, _ = get_aligned_candle_with_index(candles_list, base_ts)
|
||||||
|
features = get_features_for_tf(candles_list, aligned_index, period=10)
|
||||||
|
state_features.extend(features)
|
||||||
|
return np.array(state_features, dtype=np.float32)
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
"""
|
||||||
|
Simulate a trading step based on the base timeframe.
|
||||||
|
- If not in a position and action is BUY (2), record entry at next candle's open.
|
||||||
|
- If in a position and action is SELL (0), record exit at next candle's open, computing PnL.
|
||||||
|
Returns: (current_state, reward, next_state, done)
|
||||||
|
"""
|
||||||
|
base_candles = self.candles_dict[self.base_tf]
|
||||||
|
if self.current_index >= len(base_candles) - 1:
|
||||||
|
return self.get_state(self.current_index), 0.0, None, True
|
||||||
|
|
||||||
|
current_state = self.get_state(self.current_index)
|
||||||
|
next_index = self.current_index + 1
|
||||||
|
next_state = self.get_state(next_index)
|
||||||
|
current_candle = base_candles[self.current_index]
|
||||||
|
next_candle = base_candles[next_index]
|
||||||
|
reward = 0.0
|
||||||
|
|
||||||
|
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||||
|
if self.position is None:
|
||||||
|
if action == 2: # BUY signal: enter position at next candle's open.
|
||||||
|
entry_price = next_candle["open"]
|
||||||
|
self.position = {"entry_price": entry_price, "entry_index": self.current_index}
|
||||||
|
else:
|
||||||
|
if action == 0: # SELL signal: close position at next candle's open.
|
||||||
|
exit_price = next_candle["open"]
|
||||||
|
reward = exit_price - self.position["entry_price"]
|
||||||
|
trade = {
|
||||||
|
"entry_index": self.position["entry_index"],
|
||||||
|
"entry_price": self.position["entry_price"],
|
||||||
|
"exit_index": next_index,
|
||||||
|
"exit_price": exit_price,
|
||||||
|
"pnl": reward
|
||||||
|
}
|
||||||
|
self.trade_history.append(trade)
|
||||||
|
self.position = None
|
||||||
|
|
||||||
|
self.current_index = next_index
|
||||||
|
done = (self.current_index >= len(base_candles) - 1)
|
||||||
|
return current_state, reward, next_state, done
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Chart Plotting: Trade History & PnL
|
||||||
|
# -------------------------------------
|
||||||
|
def plot_trade_history(candles, trade_history):
|
||||||
|
close_prices = [candle["close"] for candle in candles]
|
||||||
|
x = list(range(len(close_prices)))
|
||||||
|
plt.figure(figsize=(12, 6))
|
||||||
|
plt.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
|
||||||
|
|
||||||
|
# Use these flags so that the label "BUY" or "SELL" is only shown once in the legend.
|
||||||
|
buy_label_added = False
|
||||||
|
sell_label_added = False
|
||||||
|
|
||||||
|
for trade in trade_history:
|
||||||
|
in_idx = trade["entry_index"]
|
||||||
|
out_idx = trade["exit_index"]
|
||||||
|
in_price = trade["entry_price"]
|
||||||
|
out_price = trade["exit_price"]
|
||||||
|
pnl = trade["pnl"]
|
||||||
|
|
||||||
|
# Plot BUY marker ("IN")
|
||||||
|
if not buy_label_added:
|
||||||
|
plt.plot(in_idx, in_price, marker="^", color="green", markersize=10, label="BUY (IN)")
|
||||||
|
buy_label_added = True
|
||||||
|
else:
|
||||||
|
plt.plot(in_idx, in_price, marker="^", color="green", markersize=10)
|
||||||
|
plt.text(in_idx, in_price, " IN", color="green", fontsize=8, verticalalignment="bottom")
|
||||||
|
|
||||||
|
# Plot SELL marker ("OUT")
|
||||||
|
if not sell_label_added:
|
||||||
|
plt.plot(out_idx, out_price, marker="v", color="red", markersize=10, label="SELL (OUT)")
|
||||||
|
sell_label_added = True
|
||||||
|
else:
|
||||||
|
plt.plot(out_idx, out_price, marker="v", color="red", markersize=10)
|
||||||
|
plt.text(out_idx, out_price, " OUT", color="red", fontsize=8, verticalalignment="top")
|
||||||
|
|
||||||
|
# Annotate the PnL near the SELL marker.
|
||||||
|
plt.text(out_idx, out_price, f" {pnl:+.2f}", color="blue", fontsize=8, verticalalignment="bottom")
|
||||||
|
|
||||||
|
# Choose line color based on profitability.
|
||||||
|
if pnl > 0:
|
||||||
|
line_color = "green"
|
||||||
|
elif pnl < 0:
|
||||||
|
line_color = "red"
|
||||||
|
else:
|
||||||
|
line_color = "gray"
|
||||||
|
# Draw a dotted line between the buy and sell points.
|
||||||
|
plt.plot([in_idx, out_idx], [in_price, out_price], linestyle="dotted", color=line_color)
|
||||||
|
|
||||||
|
plt.title("Trade History with PnL")
|
||||||
|
plt.xlabel("Base Candle Index (1m)")
|
||||||
|
plt.ylabel("Price")
|
||||||
|
plt.legend()
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Training Loop: Backtesting Trading Episodes
|
||||||
|
# -------------------------------------
|
||||||
|
def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
|
||||||
|
for epoch in range(1, num_epochs + 1):
|
||||||
|
state = env.reset() # clear trade history each epoch
|
||||||
|
done = False
|
||||||
|
total_reward = 0.0
|
||||||
|
steps = 0
|
||||||
|
while not done:
|
||||||
|
action = rl_agent.act(state, epsilon=epsilon)
|
||||||
|
prev_state = state
|
||||||
|
state, reward, next_state, done = env.step(action)
|
||||||
|
if next_state is None:
|
||||||
|
next_state = np.zeros_like(prev_state)
|
||||||
|
rl_agent.replay_buffer.add((prev_state, action, reward, next_state, done))
|
||||||
|
rl_agent.train_step()
|
||||||
|
total_reward += reward
|
||||||
|
steps += 1
|
||||||
|
print(f"Epoch {epoch}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||||
|
save_checkpoint(rl_agent.model, epoch, total_reward, LAST_DIR, BEST_DIR)
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Main Asynchronous Function for Training & Charting
|
||||||
|
# -------------------------------------
|
||||||
|
async def main_backtest():
|
||||||
|
symbol = 'BTC/USDT'
|
||||||
|
# Define timeframes: we'll use 5 different ones.
|
||||||
|
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||||
|
now = int(time.time() * 1000)
|
||||||
|
# Use the base timeframe period of 1500 candles. For 1m, that is 1500 minutes.
|
||||||
|
period_ms = 1500 * 60 * 1000
|
||||||
|
since = now - period_ms
|
||||||
|
end_time = now
|
||||||
|
|
||||||
|
# Initialize exchange using MEXC (or your preferred exchange).
|
||||||
|
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
||||||
|
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
||||||
|
exchange = ccxt.mexc({
|
||||||
|
'apiKey': mexc_api_key,
|
||||||
|
'secret': mexc_api_secret,
|
||||||
|
'enableRateLimit': True,
|
||||||
|
})
|
||||||
|
|
||||||
|
candles_dict = {}
|
||||||
|
for tf in timeframes:
|
||||||
|
print(f"Fetching historical data for timeframe {tf}...")
|
||||||
|
candles = await fetch_historical_data(exchange, symbol, tf, since, end_time, batch_size=500)
|
||||||
|
candles_dict[tf] = candles
|
||||||
|
|
||||||
|
# Optionally, save the multi-timeframe cache.
|
||||||
|
save_candles_cache(CACHE_FILE, candles_dict)
|
||||||
|
|
||||||
|
# Create the backtest environment using multi-timeframe data.
|
||||||
|
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes)
|
||||||
|
|
||||||
|
# Neural Network dimensions: each timeframe produces 7 features.
|
||||||
|
input_dim = len(timeframes) * 7 # 7 features * 5 timeframes = 35.
|
||||||
|
hidden_dim = 128
|
||||||
|
output_dim = 3 # Actions: SELL, HOLD, BUY.
|
||||||
|
|
||||||
|
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||||
|
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||||
|
replay_buffer = ReplayBuffer(capacity=10000)
|
||||||
|
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32, gamma=0.99)
|
||||||
|
|
||||||
|
# Load best checkpoint if available.
|
||||||
|
load_best_checkpoint(model, BEST_DIR)
|
||||||
|
|
||||||
|
# Train the agent over the historical period.
|
||||||
|
num_epochs = 10 # Adjust as needed.
|
||||||
|
train_on_historical_data(env, rl_agent, num_epochs=num_epochs, epsilon=0.1)
|
||||||
|
|
||||||
|
# Run a final simulation (without exploration) to record trade history.
|
||||||
|
state = env.reset(clear_trade_history=True)
|
||||||
|
done = False
|
||||||
|
cumulative_reward = 0.0
|
||||||
|
while not done:
|
||||||
|
action = rl_agent.act(state, epsilon=0.0)
|
||||||
|
state, reward, next_state, done = env.step(action)
|
||||||
|
cumulative_reward += reward
|
||||||
|
state = next_state
|
||||||
|
print("Final simulation cumulative profit:", cumulative_reward)
|
||||||
|
|
||||||
|
# Evaluate trade performance.
|
||||||
|
trades = env.trade_history
|
||||||
|
num_trades = len(trades)
|
||||||
|
num_wins = sum(1 for trade in trades if trade["pnl"] > 0)
|
||||||
|
win_rate = (num_wins / num_trades * 100) if num_trades > 0 else 0.0
|
||||||
|
total_profit = sum(trade["pnl"] for trade in trades)
|
||||||
|
print(f"Total trades: {num_trades}, Wins: {num_wins}, Win rate: {win_rate:.2f}%, Total Profit: {total_profit:.4f}")
|
||||||
|
|
||||||
|
# Plot chart with buy/sell markers on the base timeframe ("1m").
|
||||||
|
plot_trade_history(candles_dict["1m"], trades)
|
||||||
|
|
||||||
|
await exchange.close()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
load_dotenv()
|
||||||
|
asyncio.run(main_backtest())
|
Loading…
x
Reference in New Issue
Block a user