wip
This commit is contained in:
215
crypto/brian/index-deep-new.py
Normal file
215
crypto/brian/index-deep-new.py
Normal file
@ -0,0 +1,215 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import asyncio
|
||||
if sys.platform == 'win32':
|
||||
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from collections import deque
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
import ccxt.async_support as ccxt
|
||||
import argparse
|
||||
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
||||
import math
|
||||
|
||||
|
||||
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
|
||||
# --- New Constants ---
|
||||
NUM_TIMEFRAMES = 5 # Example: ["1m", "5m", "15m", "1h", "1d"]
|
||||
NUM_INDICATORS = 20 # Example: 20 technical indicators
|
||||
FEATURES_PER_CHANNEL = 7 # HLOC + SMA_close + SMA_volume
|
||||
|
||||
# --- Positional Encoding Module ---
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
||||
super().__init__()
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
position = torch.arange(max_len).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
||||
pe = torch.zeros(max_len, 1, d_model)
|
||||
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.pe[:x.size(0)]
|
||||
return self.dropout(x)
|
||||
|
||||
# --- Enhanced Transformer Model ---
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
||||
super().__init__()
|
||||
self.channel_branches = nn.ModuleList([
|
||||
nn.Sequential(
|
||||
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
||||
nn.LayerNorm(hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(0.1)
|
||||
) for _ in range(num_channels)
|
||||
])
|
||||
|
||||
self.timeframe_embed = nn.Embedding(num_timeframes, hidden_dim)
|
||||
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||
|
||||
# Transformer
|
||||
encoder_layers = TransformerEncoderLayer(
|
||||
d_model=hidden_dim, nhead=4, dim_feedforward=512,
|
||||
dropout=0.1, activation='gelu', batch_first=False
|
||||
)
|
||||
self.transformer = TransformerEncoder(encoder_layers, num_layers=2)
|
||||
|
||||
# Attention Pooling
|
||||
self.attn_pool = nn.Linear(hidden_dim, 1)
|
||||
|
||||
# Prediction Heads
|
||||
self.high_pred = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim//2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim//2, 1)
|
||||
)
|
||||
self.low_pred = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim//2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim//2, 1)
|
||||
)
|
||||
|
||||
def forward(self, x, timeframe_ids):
|
||||
# x shape: [batch_size, num_channels, features]
|
||||
batch_size, num_channels, _ = x.shape
|
||||
|
||||
# Process each channel
|
||||
channel_outs = []
|
||||
for i in range(num_channels):
|
||||
channel_out = self.channel_branches[i](x[:,i,:])
|
||||
channel_outs.append(channel_out)
|
||||
|
||||
# Stack and add embeddings
|
||||
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
|
||||
stacked = stacked.permute(1, 0, 2) # [channels, batch, hidden]
|
||||
|
||||
# Add timeframe embeddings
|
||||
tf_embeds = self.timeframe_embed(timeframe_ids).unsqueeze(1)
|
||||
stacked = stacked + tf_embeds
|
||||
|
||||
# Transformer
|
||||
src_mask = torch.triu(torch.ones(stacked.size(0), stacked.size(0)), diagonal=1).bool()
|
||||
transformer_out = self.transformer(stacked, src_mask=src_mask.to(x.device))
|
||||
|
||||
# Attention Pool
|
||||
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=0)
|
||||
aggregated = (transformer_out * attn_weights).sum(dim=0)
|
||||
|
||||
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
|
||||
|
||||
# --- Enhanced Data Processing ---
|
||||
class BacktestEnvironment:
|
||||
def get_state(self, index):
|
||||
"""Returns shape [num_channels, FEATURES_PER_CHANNEL]"""
|
||||
state_features = []
|
||||
base_ts = self.candles_dict[self.base_tf][index]["timestamp"]
|
||||
|
||||
# Timeframe channels
|
||||
for tf in self.timeframes:
|
||||
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
||||
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
||||
state_features.append(features)
|
||||
|
||||
# Indicator channels (placeholder - implement your indicators)
|
||||
for _ in range(NUM_INDICATORS):
|
||||
# Add indicator calculation here
|
||||
state_features.append([0.0]*FEATURES_PER_CHANNEL)
|
||||
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
# --- Enhanced Training Loop ---
|
||||
def train_on_historical_data(env, model, device, args):
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
|
||||
|
||||
for epoch in range(args.epochs):
|
||||
state = env.reset()
|
||||
total_loss = 0
|
||||
model.train()
|
||||
|
||||
while True:
|
||||
# Prepare batch
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
||||
|
||||
# Forward pass
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
|
||||
# Get targets from next candle
|
||||
_, _, next_state, done, actual_high, actual_low = env.step(None) # Dummy action
|
||||
target_high = torch.FloatTensor([actual_high]).to(device)
|
||||
target_low = torch.FloatTensor([actual_low]).to(device)
|
||||
|
||||
# Custom loss
|
||||
high_loss = torch.abs(pred_high - target_high) * 2
|
||||
low_loss = torch.abs(pred_low - target_low) * 2
|
||||
loss = (high_loss + low_loss).mean()
|
||||
|
||||
# Backprop
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if done:
|
||||
break
|
||||
state = next_state
|
||||
|
||||
scheduler.step()
|
||||
print(f"Epoch {epoch+1} Loss: {total_loss/len(env):.4f}")
|
||||
save_checkpoint(model, epoch, total_loss)
|
||||
|
||||
# --- Mode Handling ---
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train')
|
||||
parser.add_argument('--epochs', type=int, default=100)
|
||||
parser.add_argument('--lr', type=float, default=3e-4)
|
||||
parser.add_argument('--threshold', type=float, default=0.005)
|
||||
return parser.parse_args()
|
||||
|
||||
async def main():
|
||||
args = parse_args()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Initialize model
|
||||
model = TradingModel(
|
||||
num_channels=NUM_TIMEFRAMES+NUM_INDICATORS,
|
||||
num_timeframes=NUM_TIMEFRAMES
|
||||
).to(device)
|
||||
|
||||
if args.mode == 'train':
|
||||
# Initialize environment and train
|
||||
env = BacktestEnvironment(...)
|
||||
train_on_historical_data(env, model, device, args)
|
||||
elif args.mode == 'live':
|
||||
# Load model and connect to live data
|
||||
load_best_checkpoint(model)
|
||||
while True:
|
||||
# Process live data
|
||||
# Make predictions and execute trades
|
||||
await asyncio.sleep(1)
|
||||
elif args.mode == 'inference':
|
||||
# Load model and run inference
|
||||
load_best_checkpoint(model)
|
||||
# Generate signals without training
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Reference in New Issue
Block a user