integrating new CNN model
This commit is contained in:
@ -11,11 +11,17 @@ This package contains the neural network models used in the trading system:
|
||||
PyTorch implementation only.
|
||||
"""
|
||||
|
||||
from NN.models.cnn_model import EnhancedCNNModel as CNNModel
|
||||
from NN.models.dqn_agent import DQNAgent
|
||||
from NN.models.cob_rl_model import MassiveRLNetwork, COBRLModelInterface
|
||||
# Import core models
|
||||
from NN.models.dqn_agent import DQNAgent, MassiveRLNetwork
|
||||
from NN.models.cob_rl_model import COBRLModelInterface
|
||||
from NN.models.advanced_transformer_trading import AdvancedTradingTransformer, TradingTransformerConfig
|
||||
from NN.models.standardized_cnn import StandardizedCNN # Use the unified CNN model
|
||||
|
||||
# Import model interfaces
|
||||
from NN.models.model_interfaces import ModelInterface, CNNModelInterface, RLAgentInterface, ExtremaTrainerInterface
|
||||
|
||||
__all__ = ['CNNModel', 'DQNAgent', 'MassiveRLNetwork', 'COBRLModelInterface', 'AdvancedTradingTransformer', 'TradingTransformerConfig',
|
||||
'ModelInterface', 'CNNModelInterface', 'RLAgentInterface', 'ExtremaTrainerInterface']
|
||||
# Export the unified StandardizedCNN as CNNModel for compatibility
|
||||
CNNModel = StandardizedCNN
|
||||
|
||||
__all__ = ['CNNModel', 'StandardizedCNN', 'DQNAgent', 'MassiveRLNetwork', 'COBRLModelInterface', 'AdvancedTradingTransformer', 'TradingTransformerConfig',
|
||||
'ModelInterface', 'CNNModelInterface', 'RLAgentInterface', 'ExtremaTrainerInterface']
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -371,6 +371,10 @@ class EnhancedCNN(nn.Module):
|
||||
nn.Linear(128, 4) # Low risk, medium risk, high risk, extreme risk
|
||||
)
|
||||
|
||||
def _memory_barrier(self, tensor: torch.Tensor) -> torch.Tensor:
|
||||
"""Create a memory barrier to prevent in-place operation issues"""
|
||||
return tensor.detach().clone().requires_grad_(tensor.requires_grad)
|
||||
|
||||
def _check_rebuild_network(self, features):
|
||||
"""Check if network needs to be rebuilt for different feature dimensions"""
|
||||
# Prevent rebuilding with zero or invalid dimensions
|
||||
|
@ -40,7 +40,7 @@ from utils.training_integration import get_training_integration
|
||||
|
||||
# Import training components
|
||||
from NN.models.dqn_agent import DQNAgent
|
||||
from NN.models.cnn_model import CNNModelTrainer, create_enhanced_cnn_model
|
||||
from NN.models.standardized_cnn import StandardizedCNN
|
||||
from core.extrema_trainer import ExtremaTrainer
|
||||
from core.negative_case_trainer import NegativeCaseTrainer
|
||||
from core.data_provider import DataProvider
|
||||
@ -100,18 +100,10 @@ class CheckpointIntegratedTrainingSystem:
|
||||
)
|
||||
logger.info("✅ DQN Agent initialized with checkpoint management")
|
||||
|
||||
# Initialize CNN Model with checkpoint management
|
||||
logger.info("Initializing CNN Model with checkpoints...")
|
||||
cnn_model, self.cnn_trainer = create_enhanced_cnn_model(
|
||||
input_size=60,
|
||||
feature_dim=50,
|
||||
output_size=3
|
||||
)
|
||||
# Update trainer with checkpoint management
|
||||
self.cnn_trainer.model_name = "integrated_cnn_model"
|
||||
self.cnn_trainer.enable_checkpoints = True
|
||||
self.cnn_trainer.training_integration = self.training_integration
|
||||
logger.info("✅ CNN Model initialized with checkpoint management")
|
||||
# Initialize StandardizedCNN Model with checkpoint management
|
||||
logger.info("Initializing StandardizedCNN Model with checkpoints...")
|
||||
self.cnn_model = StandardizedCNN(model_name="integrated_cnn_model")
|
||||
logger.info("✅ StandardizedCNN Model initialized with checkpoint management")
|
||||
|
||||
# Initialize ExtremaTrainer with checkpoint management
|
||||
logger.info("Initializing ExtremaTrainer with checkpoints...")
|
||||
|
Reference in New Issue
Block a user