execution and training fixes

This commit is contained in:
Dobromir Popov
2025-07-04 20:45:39 +03:00
parent 0c4c682498
commit ed42e7c238
10 changed files with 879 additions and 79 deletions

164
debug/test_fixed_issues.py Normal file
View File

@ -0,0 +1,164 @@
#!/usr/bin/env python3
"""
Test script to verify that both model prediction and trading statistics issues are fixed
"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from core.orchestrator import TradingOrchestrator
from core.data_provider import DataProvider
from core.trading_executor import TradingExecutor
import asyncio
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
async def test_model_predictions():
"""Test that model predictions are working correctly"""
logger.info("=" * 60)
logger.info("TESTING MODEL PREDICTIONS")
logger.info("=" * 60)
# Initialize components
data_provider = DataProvider()
orchestrator = TradingOrchestrator(data_provider)
# Check model registration
logger.info("1. Checking model registration...")
models = orchestrator.model_registry.get_all_models()
logger.info(f" Registered models: {list(models.keys()) if models else 'None'}")
# Test making a decision
logger.info("2. Testing trading decision generation...")
decision = await orchestrator.make_trading_decision('ETH/USDT')
if decision:
logger.info(f" ✅ Decision generated: {decision.action} (confidence: {decision.confidence:.3f})")
logger.info(f" ✅ Reasoning: {decision.reasoning}")
return True
else:
logger.error(" ❌ No decision generated")
return False
def test_trading_statistics():
"""Test that trading statistics calculations are working correctly"""
logger.info("=" * 60)
logger.info("TESTING TRADING STATISTICS")
logger.info("=" * 60)
# Initialize trading executor
trading_executor = TradingExecutor()
# Check if we have any trades
trade_history = trading_executor.get_trade_history()
logger.info(f"1. Current trade history: {len(trade_history)} trades")
# Get daily stats
daily_stats = trading_executor.get_daily_stats()
logger.info("2. Daily statistics from trading executor:")
logger.info(f" Total trades: {daily_stats.get('total_trades', 0)}")
logger.info(f" Winning trades: {daily_stats.get('winning_trades', 0)}")
logger.info(f" Losing trades: {daily_stats.get('losing_trades', 0)}")
logger.info(f" Win rate: {daily_stats.get('win_rate', 0.0) * 100:.1f}%")
logger.info(f" Avg winning trade: ${daily_stats.get('avg_winning_trade', 0.0):.2f}")
logger.info(f" Avg losing trade: ${daily_stats.get('avg_losing_trade', 0.0):.2f}")
logger.info(f" Total P&L: ${daily_stats.get('total_pnl', 0.0):.2f}")
# Simulate some trades if we don't have any
if daily_stats.get('total_trades', 0) == 0:
logger.info("3. No trades found - simulating some test trades...")
# Add some mock trades to the trade history
from core.trading_executor import TradeRecord
from datetime import datetime
# Add a winning trade
winning_trade = TradeRecord(
symbol='ETH/USDT',
side='LONG',
quantity=0.01,
entry_price=2500.0,
exit_price=2550.0,
entry_time=datetime.now(),
exit_time=datetime.now(),
pnl=0.50, # $0.50 profit
fees=0.01,
confidence=0.8
)
trading_executor.trade_history.append(winning_trade)
# Add a losing trade
losing_trade = TradeRecord(
symbol='ETH/USDT',
side='LONG',
quantity=0.01,
entry_price=2500.0,
exit_price=2480.0,
entry_time=datetime.now(),
exit_time=datetime.now(),
pnl=-0.20, # $0.20 loss
fees=0.01,
confidence=0.7
)
trading_executor.trade_history.append(losing_trade)
# Get updated stats
daily_stats = trading_executor.get_daily_stats()
logger.info(" Updated statistics after adding test trades:")
logger.info(f" Total trades: {daily_stats.get('total_trades', 0)}")
logger.info(f" Winning trades: {daily_stats.get('winning_trades', 0)}")
logger.info(f" Losing trades: {daily_stats.get('losing_trades', 0)}")
logger.info(f" Win rate: {daily_stats.get('win_rate', 0.0) * 100:.1f}%")
logger.info(f" Avg winning trade: ${daily_stats.get('avg_winning_trade', 0.0):.2f}")
logger.info(f" Avg losing trade: ${daily_stats.get('avg_losing_trade', 0.0):.2f}")
logger.info(f" Total P&L: ${daily_stats.get('total_pnl', 0.0):.2f}")
# Verify calculations
expected_win_rate = 1/2 # 1 win out of 2 trades = 50%
expected_avg_win = 0.50
expected_avg_loss = -0.20
actual_win_rate = daily_stats.get('win_rate', 0.0)
actual_avg_win = daily_stats.get('avg_winning_trade', 0.0)
actual_avg_loss = daily_stats.get('avg_losing_trade', 0.0)
logger.info("4. Verifying calculations:")
logger.info(f" Win rate: Expected {expected_win_rate*100:.1f}%, Got {actual_win_rate*100:.1f}% ✅" if abs(actual_win_rate - expected_win_rate) < 0.01 else f" Win rate: Expected {expected_win_rate*100:.1f}%, Got {actual_win_rate*100:.1f}% ❌")
logger.info(f" Avg win: Expected ${expected_avg_win:.2f}, Got ${actual_avg_win:.2f}" if abs(actual_avg_win - expected_avg_win) < 0.01 else f" Avg win: Expected ${expected_avg_win:.2f}, Got ${actual_avg_win:.2f}")
logger.info(f" Avg loss: Expected ${expected_avg_loss:.2f}, Got ${actual_avg_loss:.2f}" if abs(actual_avg_loss - expected_avg_loss) < 0.01 else f" Avg loss: Expected ${expected_avg_loss:.2f}, Got ${actual_avg_loss:.2f}")
return True
return True
async def main():
"""Run all tests"""
logger.info("🚀 STARTING COMPREHENSIVE FIXES TEST")
logger.info("Testing both model prediction fixes and trading statistics fixes")
# Test model predictions
prediction_success = await test_model_predictions()
# Test trading statistics
stats_success = test_trading_statistics()
logger.info("=" * 60)
logger.info("TEST SUMMARY")
logger.info("=" * 60)
logger.info(f"Model Predictions: {'✅ FIXED' if prediction_success else '❌ STILL BROKEN'}")
logger.info(f"Trading Statistics: {'✅ FIXED' if stats_success else '❌ STILL BROKEN'}")
if prediction_success and stats_success:
logger.info("🎉 ALL ISSUES FIXED! The system should now work correctly.")
else:
logger.error("❌ Some issues remain. Check the logs above for details.")
if __name__ == "__main__":
asyncio.run(main())