create storage

This commit is contained in:
Dobromir Popov 2024-02-26 17:05:52 +00:00
parent 033c06d7b3
commit ec1efcba16

57
store-py/notes.md Normal file
View File

@ -0,0 +1,57 @@
#Environment Setup
cd vector_knowledge_graph
python -m venv venv
source venv/bin/activate
pip install fastapi uvicorn openai psycopg2-binary sqlalchemy
#Create a Database: Create a new PostgreSQL database.
CREATE EXTENSION vector;
CREATE TABLE knowledge (
id SERIAL PRIMARY KEY,
embedding vector(512) NOT NULL, -- assuming 512 dimensions for embeddings
metadata JSONB
);
CREATE INDEX ON knowledge USING ivfflat (embedding);
#Application Code
<!-- FastAPI Setup (app/api/main.py): Initialize FastAPI with a simple endpoint for testing. -->
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
async def read_root():
return {"Hello": "World"}
Database Client (app/vector_db/client.py): Implement a simple client for connecting to the database and inserting/fetching vectors.
python
Copy code
import psycopg2
from psycopg2.extras import Json
def insert_embedding(embedding, metadata):
conn = psycopg2.connect("dbname=your_db user=your_user")
cur = conn.cursor()
cur.execute("INSERT INTO knowledge (embedding, metadata) VALUES (%s, %s)", (embedding, Json(metadata)))
conn.commit()
cur.close()
conn.close()
def search_embedding(embedding):
conn = psycopg2.connect("dbname=your_db user=your_user")
cur = conn.cursor()
cur.execute("SELECT id, metadata FROM knowledge ORDER BY embedding <-> %s LIMIT 5", (embedding,))
results = cur.fetchall()
cur.close()
conn.close()
return results
5. LLM Integration
At this stage, we'll need to implement the logic to interact with OpenAI's API to generate and process embeddings. Since this involves using OpenAI's services, ensure you have an API key and have agreed to their terms of use.
6. Running the Application
With the basic components in place, you can start the FastAPI application using uvicorn:
bash
Copy code
uvicorn app.api.main:app --reload