fix async model loading

This commit is contained in:
Dobromir Popov
2025-10-24 23:13:28 +03:00
parent 2233a88d3e
commit e9edf2c5f2
3 changed files with 197 additions and 92 deletions

View File

@@ -147,14 +147,19 @@ class AnnotationDashboard:
if self.data_provider:
self._enable_unified_storage_async()
# ANNOTATE doesn't need orchestrator - skip ML model loading for fast startup
# ANNOTATE doesn't need orchestrator immediately - load async for fast startup
self.orchestrator = None
self.models_loading = True
self.available_models = []
# Initialize ANNOTATE components
self.annotation_manager = AnnotationManager()
# Use REAL training adapter - NO SIMULATION!
self.training_adapter = RealTrainingAdapter(None, self.data_provider)
# Start async model loading in background
self._start_async_model_loading()
# Initialize data loader with existing DataProvider
self.data_loader = HistoricalDataLoader(self.data_provider) if self.data_provider else None
self.time_range_manager = TimeRangeManager(self.data_loader) if self.data_loader else None
@@ -168,6 +173,60 @@ class AnnotationDashboard:
logger.info("Annotation Dashboard initialized")
def _start_async_model_loading(self):
"""Load ML models asynchronously in background thread"""
import threading
def load_models():
try:
logger.info("🔄 Starting async model loading...")
# Initialize orchestrator with models
if TradingOrchestrator:
self.orchestrator = TradingOrchestrator(
data_provider=self.data_provider,
enhanced_rl_training=True
)
# Initialize ML models
logger.info("Initializing ML models...")
self.orchestrator._initialize_ml_models()
# Update training adapter with orchestrator
self.training_adapter.orchestrator = self.orchestrator
# Get available models from orchestrator
available = []
if hasattr(self.orchestrator, 'rl_agent') and self.orchestrator.rl_agent:
available.append('DQN')
if hasattr(self.orchestrator, 'cnn_model') and self.orchestrator.cnn_model:
available.append('CNN')
if hasattr(self.orchestrator, 'transformer_model') and self.orchestrator.transformer_model:
available.append('Transformer')
self.available_models = available
if available:
logger.info(f"✅ Models loaded: {', '.join(available)}")
else:
logger.warning("⚠️ No models were initialized")
self.models_loading = False
logger.info("✅ Async model loading complete")
else:
logger.warning("⚠️ TradingOrchestrator not available")
self.models_loading = False
except Exception as e:
logger.error(f"❌ Error loading models: {e}")
self.models_loading = False
self.available_models = []
# Start loading in background thread
thread = threading.Thread(target=load_models, daemon=True)
thread.start()
logger.info("🚀 Model loading started in background (UI remains responsive)")
def _enable_unified_storage_async(self):
"""Enable unified storage system in background thread"""
def enable_storage():
@@ -967,21 +1026,33 @@ class AnnotationDashboard:
@self.server.route('/api/available-models', methods=['GET'])
def get_available_models():
"""Get list of available models"""
"""Get list of available models with loading status"""
try:
if not self.training_adapter:
return jsonify({
'success': False,
'loading': False,
'error': {
'code': 'TRAINING_UNAVAILABLE',
'message': 'Real training adapter not available'
}
})
# Check if models are still loading
if self.models_loading:
return jsonify({
'success': True,
'loading': True,
'models': [],
'message': 'Models are loading in background...'
})
# Models loaded - get the list
models = self.training_adapter.get_available_models()
return jsonify({
'success': True,
'loading': False,
'models': models
})
@@ -989,6 +1060,7 @@ class AnnotationDashboard:
logger.error(f"Error getting available models: {e}")
return jsonify({
'success': False,
'loading': False,
'error': {
'code': 'MODEL_LIST_ERROR',
'message': str(e)