training fixes and enhancements wip
This commit is contained in:
@ -134,8 +134,8 @@ class TrainingIntegration:
|
||||
|
||||
# Store experience in DQN memory
|
||||
dqn_agent = self.orchestrator.dqn_agent
|
||||
if hasattr(dqn_agent, 'store_experience'):
|
||||
dqn_agent.store_experience(
|
||||
if hasattr(dqn_agent, 'remember'):
|
||||
dqn_agent.remember(
|
||||
state=np.array(dqn_state),
|
||||
action=action_idx,
|
||||
reward=reward,
|
||||
@ -145,7 +145,7 @@ class TrainingIntegration:
|
||||
|
||||
# Trigger training if enough experiences
|
||||
if hasattr(dqn_agent, 'replay') and len(getattr(dqn_agent, 'memory', [])) > 32:
|
||||
dqn_agent.replay(batch_size=32)
|
||||
dqn_agent.replay()
|
||||
logger.info("DQN training step completed")
|
||||
|
||||
return True
|
||||
@ -345,7 +345,7 @@ class TrainingIntegration:
|
||||
# Perform training step if agent has replay method
|
||||
if hasattr(cob_rl_agent, 'replay') and hasattr(cob_rl_agent, 'memory'):
|
||||
if len(cob_rl_agent.memory) > 32: # Enough samples to train
|
||||
loss = cob_rl_agent.replay(batch_size=min(32, len(cob_rl_agent.memory)))
|
||||
loss = cob_rl_agent.replay()
|
||||
if loss is not None:
|
||||
logger.info(f"COB RL trained on trade outcome: P&L=${pnl:.2f}, loss={loss:.4f}")
|
||||
return True
|
||||
|
Reference in New Issue
Block a user