order flow WIP, chart broken

This commit is contained in:
Dobromir Popov
2025-06-18 13:51:08 +03:00
parent 5bce17a21a
commit e238ce374b
16 changed files with 1768 additions and 1333 deletions

View File

@ -10,7 +10,7 @@ This package contains the neural network models used in the trading system:
PyTorch implementation only.
"""
from NN.models.cnn_model_pytorch import CNNModelPyTorch as CNNModel
from NN.models.cnn_model_pytorch import EnhancedCNNModel as CNNModel
from NN.models.transformer_model_pytorch import (
TransformerModelPyTorch as TransformerModel,
MixtureOfExpertsModelPyTorch as MixtureOfExpertsModel

725
NN/models/cnn_model.py Normal file
View File

@ -0,0 +1,725 @@
#!/usr/bin/env python3
"""
Enhanced CNN Model for Trading - PyTorch Implementation
Much larger and more sophisticated architecture for better learning
"""
import os
import logging
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import math
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import torch.nn.functional as F
from typing import Dict, Any, Optional, Tuple
# Configure logging
logger = logging.getLogger(__name__)
class MultiHeadAttention(nn.Module):
"""Multi-head attention mechanism for sequence data"""
def __init__(self, d_model: int, num_heads: int = 8, dropout: float = 0.1):
super().__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_o = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.scale = math.sqrt(self.d_k)
def forward(self, x: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, _ = x.size()
# Compute Q, K, V
Q = self.w_q(x).view(batch_size, seq_len, self.num_heads, self.d_k).transpose(1, 2)
K = self.w_k(x).view(batch_size, seq_len, self.num_heads, self.d_k).transpose(1, 2)
V = self.w_v(x).view(batch_size, seq_len, self.num_heads, self.d_k).transpose(1, 2)
# Attention weights
scores = torch.matmul(Q, K.transpose(-2, -1)) / self.scale
attention_weights = F.softmax(scores, dim=-1)
attention_weights = self.dropout(attention_weights)
# Apply attention
attention_output = torch.matmul(attention_weights, V)
attention_output = attention_output.transpose(1, 2).contiguous().view(
batch_size, seq_len, self.d_model
)
return self.w_o(attention_output)
class ResidualBlock(nn.Module):
"""Residual block with normalization and dropout"""
def __init__(self, channels: int, dropout: float = 0.1):
super().__init__()
self.conv1 = nn.Conv1d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(channels, channels, kernel_size=3, padding=1)
self.norm1 = nn.BatchNorm1d(channels)
self.norm2 = nn.BatchNorm1d(channels)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
out = F.relu(self.norm1(self.conv1(x)))
out = self.dropout(out)
out = self.norm2(self.conv2(out))
# Add residual connection (avoid in-place operation)
out = out + residual
return F.relu(out)
class SpatialAttentionBlock(nn.Module):
"""Spatial attention for feature maps"""
def __init__(self, channels: int):
super().__init__()
self.conv = nn.Conv1d(channels, 1, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Compute attention weights
attention = torch.sigmoid(self.conv(x))
# Avoid in-place operation by creating new tensor
return torch.mul(x, attention)
class EnhancedCNNModel(nn.Module):
"""
Much larger and more sophisticated CNN architecture for trading
Features:
- Deep convolutional layers with residual connections
- Multi-head attention mechanisms
- Spatial attention blocks
- Multiple feature extraction paths
- Large capacity for complex pattern learning
"""
def __init__(self,
input_size: int = 60,
feature_dim: int = 50,
output_size: int = 2, # BUY/SELL for 2-action system
base_channels: int = 256, # Increased from 128 to 256
num_blocks: int = 12, # Increased from 6 to 12
num_attention_heads: int = 16, # Increased from 8 to 16
dropout_rate: float = 0.2):
super().__init__()
self.input_size = input_size
self.feature_dim = feature_dim
self.output_size = output_size
self.base_channels = base_channels
# Much larger input embedding - project features to higher dimension
self.input_embedding = nn.Sequential(
nn.Linear(feature_dim, base_channels // 2),
nn.LayerNorm(base_channels // 2), # Changed from BatchNorm1d for batch_size=1 compatibility
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels // 2, base_channels),
nn.LayerNorm(base_channels), # Changed from BatchNorm1d for batch_size=1 compatibility
nn.ReLU(),
nn.Dropout(dropout_rate)
)
# Multi-scale convolutional feature extraction with more channels
self.conv_path1 = self._build_conv_path(base_channels, base_channels, 3)
self.conv_path2 = self._build_conv_path(base_channels, base_channels, 5)
self.conv_path3 = self._build_conv_path(base_channels, base_channels, 7)
self.conv_path4 = self._build_conv_path(base_channels, base_channels, 9) # Additional path
# Feature fusion with more capacity
self.feature_fusion = nn.Sequential(
nn.Conv1d(base_channels * 4, base_channels * 3, kernel_size=1), # 4 paths now
nn.BatchNorm1d(base_channels * 3),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Conv1d(base_channels * 3, base_channels * 2, kernel_size=1),
nn.BatchNorm1d(base_channels * 2),
nn.ReLU(),
nn.Dropout(dropout_rate)
)
# Much deeper residual blocks for complex pattern learning
self.residual_blocks = nn.ModuleList([
ResidualBlock(base_channels * 2, dropout_rate) for _ in range(num_blocks)
])
# More spatial attention blocks
self.spatial_attention = nn.ModuleList([
SpatialAttentionBlock(base_channels * 2) for _ in range(6) # Increased from 3 to 6
])
# Multiple temporal attention layers
self.temporal_attention1 = MultiHeadAttention(
d_model=base_channels * 2,
num_heads=num_attention_heads,
dropout=dropout_rate
)
self.temporal_attention2 = MultiHeadAttention(
d_model=base_channels * 2,
num_heads=num_attention_heads // 2,
dropout=dropout_rate
)
# Global feature aggregation
self.global_pool = nn.AdaptiveAvgPool1d(1)
self.global_max_pool = nn.AdaptiveMaxPool1d(1)
# Much larger advanced feature processing (using LayerNorm for batch_size=1 compatibility)
self.advanced_features = nn.Sequential(
nn.Linear(base_channels * 4, base_channels * 6), # Increased capacity
nn.LayerNorm(base_channels * 6), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels * 6, base_channels * 4),
nn.LayerNorm(base_channels * 4), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels * 4, base_channels * 3),
nn.LayerNorm(base_channels * 3), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels * 3, base_channels * 2),
nn.LayerNorm(base_channels * 2), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels * 2, base_channels),
nn.LayerNorm(base_channels), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate)
)
# Enhanced market regime detection branch (using LayerNorm for batch_size=1 compatibility)
self.regime_detector = nn.Sequential(
nn.Linear(base_channels, base_channels // 2),
nn.LayerNorm(base_channels // 2), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels // 2, base_channels // 4),
nn.LayerNorm(base_channels // 4), # Changed from BatchNorm1d
nn.ReLU(),
nn.Linear(base_channels // 4, 8), # 8 market regimes instead of 4
nn.Softmax(dim=1)
)
# Enhanced volatility prediction branch (using LayerNorm for batch_size=1 compatibility)
self.volatility_predictor = nn.Sequential(
nn.Linear(base_channels, base_channels // 2),
nn.LayerNorm(base_channels // 2), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels // 2, base_channels // 4),
nn.LayerNorm(base_channels // 4), # Changed from BatchNorm1d
nn.ReLU(),
nn.Linear(base_channels // 4, 1),
nn.Sigmoid()
)
# Main trading decision head (using LayerNorm for batch_size=1 compatibility)
self.decision_head = nn.Sequential(
nn.Linear(base_channels + 8 + 1, base_channels), # 8 regime classes + 1 volatility
nn.LayerNorm(base_channels), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels, base_channels // 2),
nn.LayerNorm(base_channels // 2), # Changed from BatchNorm1d
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(base_channels // 2, output_size)
)
# Confidence estimation head
self.confidence_head = nn.Sequential(
nn.Linear(base_channels, base_channels // 2),
nn.ReLU(),
nn.Linear(base_channels // 2, 1),
nn.Sigmoid()
)
# Initialize weights
self._initialize_weights()
def _build_conv_path(self, in_channels: int, out_channels: int, kernel_size: int) -> nn.Module:
"""Build a convolutional path with multiple layers"""
return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, padding=kernel_size//2),
nn.BatchNorm1d(out_channels),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv1d(out_channels, out_channels, kernel_size, padding=kernel_size//2),
nn.BatchNorm1d(out_channels),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv1d(out_channels, out_channels, kernel_size, padding=kernel_size//2),
nn.BatchNorm1d(out_channels),
nn.ReLU()
)
def _initialize_weights(self):
"""Initialize model weights"""
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""
Forward pass with multiple outputs
Args:
x: Input tensor of shape [batch_size, sequence_length, features]
Returns:
Dictionary with predictions, confidence, regime, and volatility
"""
# Handle input shapes flexibly
if len(x.shape) == 2:
# Input is [seq_len, features] - add batch dimension
x = x.unsqueeze(0)
elif len(x.shape) > 3:
# Input has extra dimensions - flatten to [batch, seq, features]
x = x.view(x.shape[0], -1, x.shape[-1])
batch_size, seq_len, features = x.shape
# Reshape for processing: [batch, seq, features] -> [batch*seq, features]
x_reshaped = x.view(-1, features)
# Input embedding
embedded = self.input_embedding(x_reshaped) # [batch*seq, base_channels]
# Reshape back for conv1d: [batch*seq, channels] -> [batch, channels, seq]
embedded = embedded.view(batch_size, seq_len, -1).transpose(1, 2)
# Multi-scale feature extraction
path1 = self.conv_path1(embedded)
path2 = self.conv_path2(embedded)
path3 = self.conv_path3(embedded)
path4 = self.conv_path4(embedded)
# Feature fusion
fused_features = torch.cat([path1, path2, path3, path4], dim=1)
fused_features = self.feature_fusion(fused_features)
# Apply residual blocks with spatial attention
current_features = fused_features
for i, (res_block, attention) in enumerate(zip(self.residual_blocks, self.spatial_attention)):
current_features = res_block(current_features)
if i % 2 == 0: # Apply attention every other block
current_features = attention(current_features)
# Apply remaining residual blocks
for res_block in self.residual_blocks[len(self.spatial_attention):]:
current_features = res_block(current_features)
# Temporal attention - apply both attention layers
# Reshape for attention: [batch, channels, seq] -> [batch, seq, channels]
attention_input = current_features.transpose(1, 2)
attended_features = self.temporal_attention1(attention_input)
attended_features = self.temporal_attention2(attended_features)
# Back to conv format: [batch, seq, channels] -> [batch, channels, seq]
attended_features = attended_features.transpose(1, 2)
# Global aggregation
avg_pooled = self.global_pool(attended_features).squeeze(-1) # [batch, channels]
max_pooled = self.global_max_pool(attended_features).squeeze(-1) # [batch, channels]
# Combine global features
global_features = torch.cat([avg_pooled, max_pooled], dim=1)
# Advanced feature processing
processed_features = self.advanced_features(global_features)
# Multi-task predictions
regime_probs = self.regime_detector(processed_features)
volatility_pred = self.volatility_predictor(processed_features)
confidence = self.confidence_head(processed_features)
# Combine all features for final decision (8 regime classes + 1 volatility)
combined_features = torch.cat([processed_features, regime_probs, volatility_pred], dim=1)
trading_logits = self.decision_head(combined_features)
# Apply temperature scaling for better calibration
temperature = 1.5
trading_probs = F.softmax(trading_logits / temperature, dim=1)
return {
'logits': trading_logits,
'probabilities': trading_probs,
'confidence': confidence.squeeze(-1),
'regime': regime_probs,
'volatility': volatility_pred.squeeze(-1),
'features': processed_features
}
def predict(self, feature_matrix: np.ndarray) -> Dict[str, Any]:
"""
Make predictions on feature matrix
Args:
feature_matrix: numpy array of shape [sequence_length, features]
Returns:
Dictionary with prediction results
"""
self.eval()
with torch.no_grad():
# Convert to tensor and add batch dimension
if isinstance(feature_matrix, np.ndarray):
x = torch.FloatTensor(feature_matrix).unsqueeze(0) # Add batch dim
else:
x = feature_matrix.unsqueeze(0)
# Move to device
device = next(self.parameters()).device
x = x.to(device)
# Forward pass
outputs = self.forward(x)
# Extract results
probs = outputs['probabilities'].cpu().numpy()[0]
confidence = outputs['confidence'].cpu().numpy()[0]
regime = outputs['regime'].cpu().numpy()[0]
volatility = outputs['volatility'].cpu().numpy()[0]
# Determine action (0=BUY, 1=SELL for 2-action system)
action = int(np.argmax(probs))
action_confidence = float(probs[action])
return {
'action': action,
'action_name': 'BUY' if action == 0 else 'SELL',
'confidence': float(confidence),
'action_confidence': action_confidence,
'probabilities': probs.tolist(),
'regime_probabilities': regime.tolist(),
'volatility_prediction': float(volatility),
'raw_logits': outputs['logits'].cpu().numpy()[0].tolist()
}
def get_memory_usage(self) -> Dict[str, Any]:
"""Get model memory usage statistics"""
total_params = sum(p.numel() for p in self.parameters())
trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
param_size = sum(p.numel() * p.element_size() for p in self.parameters())
buffer_size = sum(b.numel() * b.element_size() for b in self.buffers())
return {
'total_parameters': total_params,
'trainable_parameters': trainable_params,
'parameter_size_mb': param_size / (1024 * 1024),
'buffer_size_mb': buffer_size / (1024 * 1024),
'total_size_mb': (param_size + buffer_size) / (1024 * 1024)
}
def to_device(self, device: str):
"""Move model to specified device"""
return self.to(torch.device(device))
class CNNModelTrainer:
"""Enhanced trainer for the beefed-up CNN model"""
def __init__(self, model: EnhancedCNNModel, learning_rate: float = 0.0001, device: str = 'cuda'):
self.model = model.to(device)
self.device = device
self.learning_rate = learning_rate
# Use AdamW optimizer with weight decay
self.optimizer = torch.optim.AdamW(
model.parameters(),
lr=learning_rate,
weight_decay=0.01,
betas=(0.9, 0.999)
)
# Learning rate scheduler
self.scheduler = torch.optim.lr_scheduler.OneCycleLR(
self.optimizer,
max_lr=learning_rate * 10,
total_steps=10000, # Will be updated based on actual training
pct_start=0.1,
anneal_strategy='cos'
)
# Multi-task loss functions
self.main_criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
self.confidence_criterion = nn.BCELoss()
self.regime_criterion = nn.CrossEntropyLoss()
self.volatility_criterion = nn.MSELoss()
self.training_history = []
def train_step(self, x: torch.Tensor, y: torch.Tensor,
confidence_targets: Optional[torch.Tensor] = None,
regime_targets: Optional[torch.Tensor] = None,
volatility_targets: Optional[torch.Tensor] = None) -> Dict[str, float]:
"""Single training step with multi-task learning"""
self.model.train()
self.optimizer.zero_grad()
# Forward pass
outputs = self.model(x)
# Main trading loss
main_loss = self.main_criterion(outputs['logits'], y)
total_loss = main_loss
losses = {'main_loss': main_loss.item()}
# Confidence loss (if targets provided)
if confidence_targets is not None:
conf_loss = self.confidence_criterion(outputs['confidence'], confidence_targets)
total_loss += 0.1 * conf_loss
losses['confidence_loss'] = conf_loss.item()
# Regime classification loss (if targets provided)
if regime_targets is not None:
regime_loss = self.regime_criterion(outputs['regime'], regime_targets)
total_loss += 0.05 * regime_loss
losses['regime_loss'] = regime_loss.item()
# Volatility prediction loss (if targets provided)
if volatility_targets is not None:
vol_loss = self.volatility_criterion(outputs['volatility'], volatility_targets)
total_loss += 0.05 * vol_loss
losses['volatility_loss'] = vol_loss.item()
losses['total_loss'] = total_loss.item()
# Backward pass
total_loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step()
# Calculate accuracy
with torch.no_grad():
predictions = torch.argmax(outputs['probabilities'], dim=1)
accuracy = (predictions == y).float().mean().item()
losses['accuracy'] = accuracy
return losses
def save_model(self, filepath: str, metadata: Optional[Dict] = None):
"""Save model with metadata"""
save_dict = {
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.scheduler.state_dict(),
'training_history': self.training_history,
'model_config': {
'input_size': self.model.input_size,
'feature_dim': self.model.feature_dim,
'output_size': self.model.output_size,
'base_channels': self.model.base_channels
}
}
if metadata:
save_dict['metadata'] = metadata
torch.save(save_dict, filepath)
logger.info(f"Enhanced CNN model saved to {filepath}")
def load_model(self, filepath: str) -> Dict:
"""Load model from file"""
checkpoint = torch.load(filepath, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if 'scheduler_state_dict' in checkpoint:
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
if 'training_history' in checkpoint:
self.training_history = checkpoint['training_history']
logger.info(f"Enhanced CNN model loaded from {filepath}")
return checkpoint.get('metadata', {})
def create_enhanced_cnn_model(input_size: int = 60,
feature_dim: int = 50,
output_size: int = 2,
base_channels: int = 256,
device: str = 'cuda') -> Tuple[EnhancedCNNModel, CNNModelTrainer]:
"""Create enhanced CNN model and trainer"""
model = EnhancedCNNModel(
input_size=input_size,
feature_dim=feature_dim,
output_size=output_size,
base_channels=base_channels,
num_blocks=12,
num_attention_heads=16,
dropout_rate=0.2
)
trainer = CNNModelTrainer(model, learning_rate=0.0001, device=device)
logger.info(f"Created enhanced CNN model with {model.get_memory_usage()['total_parameters']:,} parameters")
return model, trainer
# Compatibility wrapper for williams_market_structure.py
class CNNModel:
"""
Compatibility wrapper for the enhanced CNN model
"""
def __init__(self, input_shape=(900, 50), output_size=10, model_path=None):
self.input_shape = input_shape
self.output_size = output_size
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Create the enhanced model
self.model = EnhancedCNNModel(
input_size=input_shape[0],
feature_dim=input_shape[1],
output_size=output_size
)
self.trainer = CNNModelTrainer(self.model, device=self.device)
logger.info(f"CNN Model wrapper initialized: input_shape={input_shape}, output_size={output_size}")
if model_path and os.path.exists(model_path):
self.load(model_path)
def build_model(self, **kwargs):
"""Build/configure the model"""
logger.info("CNN Model build_model called")
return self
def predict(self, X):
"""Make predictions on input data"""
try:
if isinstance(X, np.ndarray):
result = self.model.predict(X)
pred_class = np.array([result['action']])
pred_proba = np.array([result['probabilities']])
else:
# Handle tensor input
result = self.model.predict(X.cpu().numpy() if hasattr(X, 'cpu') else X)
pred_class = np.array([result['action']])
pred_proba = np.array([result['probabilities']])
logger.debug(f"CNN prediction: class={pred_class}, proba_shape={pred_proba.shape}")
return pred_class, pred_proba
except Exception as e:
logger.error(f"Error in CNN prediction: {e}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
# Return dummy prediction
pred_class = np.array([0])
pred_proba = np.array([[0.1] * self.output_size])
return pred_class, pred_proba
def fit(self, X, y, **kwargs):
"""Train the model on input data"""
try:
# Convert to tensors if needed (create new tensors to avoid in-place modifications)
if isinstance(X, np.ndarray):
X = torch.FloatTensor(X.copy()) # Use copy to avoid in-place modifications
elif isinstance(X, torch.Tensor):
X = X.clone().detach() # Clone to avoid in-place modifications
if isinstance(y, np.ndarray):
y = torch.LongTensor(y.copy()) # Use copy to avoid in-place modifications
elif isinstance(y, torch.Tensor):
y = y.clone().detach().long() # Clone to avoid in-place modifications
# Ensure proper shapes and consistent batch sizes
if len(X.shape) == 2:
X = X.unsqueeze(0) # [seq, features] -> [1, seq, features]
# Handle target tensor - ensure it matches batch size (avoid in-place operations)
if len(y.shape) == 0:
y = y.unsqueeze(0) # scalar -> [1]
elif len(y.shape) == 2 and y.shape[0] == 1:
# Already correct shape [1, num_classes] -> get class index
y = torch.argmax(y, dim=1) # [1, num_classes] -> [1]
elif len(y.shape) == 1 and len(y) > 1:
# Multi-class probabilities -> get class index, ensure batch size 1
y = torch.argmax(y).unsqueeze(0) # [num_classes] -> [1]
elif len(y.shape) == 1 and len(y) == 1:
pass # Already correct [1]
else:
# Fallback: take first element and ensure batch size 1
y = y.view(-1)[:1] # Take only first element
# Move to device (create new tensors on device, don't modify in-place)
X = X.to(self.device, non_blocking=True)
y = y.to(self.device, non_blocking=True)
# Use trainer's train_step
loss_dict = self.trainer.train_step(X, y)
logger.info(f"CNN training: X_shape={X.shape}, y_shape={y.shape}, loss={loss_dict.get('total_loss', 0):.4f}")
return self
except Exception as e:
logger.error(f"Error in CNN training: {e}")
return self
def save(self, filepath: str):
"""Save the model"""
try:
self.trainer.save_model(filepath)
logger.info(f"CNN model saved to {filepath}")
except Exception as e:
logger.error(f"Error saving CNN model: {e}")
def load(self, filepath: str):
"""Load the model"""
try:
self.trainer.load_model(filepath)
logger.info(f"CNN model loaded from {filepath}")
except Exception as e:
logger.error(f"Error loading CNN model: {e}")
def to_device(self, device):
"""Move model to device"""
self.device = device
self.model.to(device)
return self
def get_memory_usage(self):
"""Get model memory usage"""
try:
return self.model.get_memory_usage()
except Exception as e:
logger.error(f"Error getting memory usage: {e}")
return {'total_parameters': 0, 'memory_mb': 0}

View File

@ -80,8 +80,8 @@ class ResidualBlock(nn.Module):
out = self.dropout(out)
out = self.norm2(self.conv2(out))
# Add residual connection
out += residual
# Add residual connection (avoid in-place operation)
out = out + residual
return F.relu(out)
class SpatialAttentionBlock(nn.Module):
@ -94,7 +94,8 @@ class SpatialAttentionBlock(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Compute attention weights
attention = torch.sigmoid(self.conv(x))
return x * attention
# Avoid in-place operation by creating new tensor
return torch.mul(x, attention)
class EnhancedCNNModel(nn.Module):
"""

View File

@ -0,0 +1,595 @@
"""
Enhanced CNN Model with Bookmap Order Book Integration
This module extends the enhanced CNN to incorporate:
- Traditional market data (OHLCV, indicators)
- Order book depth features (COB)
- Volume profile features (SVP)
- Order flow signals (sweeps, absorptions, momentum)
- Market microstructure metrics
The integrated model provides comprehensive market awareness for superior trading decisions.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
from typing import Dict, List, Optional, Tuple, Any
logger = logging.getLogger(__name__)
class ResidualBlock(nn.Module):
"""Enhanced residual block with skip connections"""
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm1d(out_channels)
# Shortcut connection
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# Avoid in-place operation
out = out + self.shortcut(x)
out = F.relu(out)
return out
class MultiHeadAttention(nn.Module):
"""Multi-head attention mechanism"""
def __init__(self, dim, num_heads=8, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q_linear = nn.Linear(dim, dim)
self.k_linear = nn.Linear(dim, dim)
self.v_linear = nn.Linear(dim, dim)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(dim, dim)
def forward(self, x):
batch_size, seq_len, dim = x.size()
# Linear transformations
q = self.q_linear(x).view(batch_size, seq_len, self.num_heads, self.head_dim)
k = self.k_linear(x).view(batch_size, seq_len, self.num_heads, self.head_dim)
v = self.v_linear(x).view(batch_size, seq_len, self.num_heads, self.head_dim)
# Transpose for attention
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
# Scaled dot-product attention
scores = torch.matmul(q, k.transpose(-2, -1)) / np.sqrt(self.head_dim)
attn_weights = F.softmax(scores, dim=-1)
attn_weights = self.dropout(attn_weights)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, dim)
return self.out(attn_output), attn_weights
class OrderBookEncoder(nn.Module):
"""Specialized encoder for order book data"""
def __init__(self, input_dim=100, hidden_dim=512):
super(OrderBookEncoder, self).__init__()
# Order book feature processing
self.bid_encoder = nn.Sequential(
nn.Linear(40, 128), # 20 levels x 2 features
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 256),
nn.ReLU(),
nn.Dropout(0.2)
)
self.ask_encoder = nn.Sequential(
nn.Linear(40, 128), # 20 levels x 2 features
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 256),
nn.ReLU(),
nn.Dropout(0.2)
)
# Microstructure features
self.microstructure_encoder = nn.Sequential(
nn.Linear(15, 64), # Liquidity + imbalance + flow features
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(64, 128),
nn.ReLU(),
nn.Dropout(0.2)
)
# Cross-attention between bids and asks
self.cross_attention = MultiHeadAttention(256, num_heads=8)
# Output projection
self.output_projection = nn.Sequential(
nn.Linear(256 + 256 + 128, hidden_dim), # Combine all features
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim)
)
def forward(self, orderbook_features):
"""
Process order book features
Args:
orderbook_features: Tensor of shape [batch, 100] containing:
- 40 bid features (20 levels x 2)
- 40 ask features (20 levels x 2)
- 15 microstructure features
- 5 flow signal features
"""
# Split features
bid_features = orderbook_features[:, :40] # First 40 features
ask_features = orderbook_features[:, 40:80] # Next 40 features
micro_features = orderbook_features[:, 80:95] # Next 15 features
# flow_features = orderbook_features[:, 95:100] # Last 5 features (included in micro)
# Encode each component
bid_encoded = self.bid_encoder(bid_features) # [batch, 256]
ask_encoded = self.ask_encoder(ask_features) # [batch, 256]
micro_encoded = self.microstructure_encoder(micro_features) # [batch, 128]
# Add sequence dimension for attention
bid_seq = bid_encoded.unsqueeze(1) # [batch, 1, 256]
ask_seq = ask_encoded.unsqueeze(1) # [batch, 1, 256]
# Cross-attention between bids and asks
combined_seq = torch.cat([bid_seq, ask_seq], dim=1) # [batch, 2, 256]
attended_features, attention_weights = self.cross_attention(combined_seq)
# Flatten attended features
attended_flat = attended_features.view(attended_features.size(0), -1) # [batch, 512]
# Combine with microstructure features
combined_features = torch.cat([attended_flat, micro_encoded], dim=1) # [batch, 640]
# Final projection
output = self.output_projection(combined_features)
return output
class VolumeProfileEncoder(nn.Module):
"""Encoder for volume profile data"""
def __init__(self, max_levels=50, hidden_dim=256):
super(VolumeProfileEncoder, self).__init__()
self.max_levels = max_levels
# Process volume profile levels
self.level_encoder = nn.Sequential(
nn.Linear(7, 32), # price, volume, buy_vol, sell_vol, trades, vwap, net_vol
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(32, 64),
nn.ReLU()
)
# Attention over price levels
self.level_attention = MultiHeadAttention(64, num_heads=4)
# Final aggregation
self.aggregator = nn.Sequential(
nn.Linear(64, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim)
)
def forward(self, volume_profile_data):
"""
Process volume profile data
Args:
volume_profile_data: List of dicts or tensor with volume profile levels
"""
# If input is list of dicts, convert to tensor
if isinstance(volume_profile_data, list):
if not volume_profile_data:
# Return zero features if no data
batch_size = 1
return torch.zeros(batch_size, self.aggregator[-1].out_features)
# Convert to tensor
features = []
for level in volume_profile_data[:self.max_levels]:
level_features = [
level.get('price', 0.0),
level.get('volume', 0.0),
level.get('buy_volume', 0.0),
level.get('sell_volume', 0.0),
level.get('trades_count', 0.0),
level.get('vwap', 0.0),
level.get('net_volume', 0.0)
]
features.append(level_features)
# Pad if needed
while len(features) < self.max_levels:
features.append([0.0] * 7)
volume_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0)
else:
volume_tensor = volume_profile_data
batch_size, num_levels, feature_dim = volume_tensor.shape
# Encode each level
level_features = self.level_encoder(volume_tensor.view(-1, feature_dim))
level_features = level_features.view(batch_size, num_levels, -1)
# Apply attention across levels
attended_levels, _ = self.level_attention(level_features)
# Global average pooling
aggregated = torch.mean(attended_levels, dim=1)
# Final processing
output = self.aggregator(aggregated)
return output
class EnhancedCNNWithOrderBook(nn.Module):
"""
Enhanced CNN model integrating traditional market data with order book analysis
Features:
- Multi-scale convolutional processing for time series data
- Specialized order book feature extraction
- Volume profile analysis
- Order flow signal integration
- Multi-head attention mechanisms
- Dueling architecture for value and advantage estimation
"""
def __init__(self,
market_input_shape=(60, 50), # Traditional market data
orderbook_features=100, # Order book feature dimension
n_actions=2,
confidence_threshold=0.5):
super(EnhancedCNNWithOrderBook, self).__init__()
self.market_input_shape = market_input_shape
self.orderbook_features = orderbook_features
self.n_actions = n_actions
self.confidence_threshold = confidence_threshold
# Traditional market data processing
self.market_encoder = self._build_market_encoder()
# Order book data processing
self.orderbook_encoder = OrderBookEncoder(
input_dim=orderbook_features,
hidden_dim=512
)
# Volume profile processing
self.volume_encoder = VolumeProfileEncoder(
max_levels=50,
hidden_dim=256
)
# Feature fusion
total_features = 1024 + 512 + 256 # market + orderbook + volume
self.feature_fusion = nn.Sequential(
nn.Linear(total_features, 1536),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1536, 1024),
nn.ReLU(),
nn.Dropout(0.3)
)
# Multi-head attention for integrated features
self.integrated_attention = MultiHeadAttention(1024, num_heads=16)
# Dueling architecture
self.advantage_stream = nn.Sequential(
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, n_actions)
)
self.value_stream = nn.Sequential(
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1)
)
# Auxiliary heads for multi-task learning
self.extrema_head = nn.Sequential(
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 3) # bottom, top, neither
)
self.market_regime_head = nn.Sequential(
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 8) # trending, ranging, volatile, etc.
)
self.confidence_head = nn.Sequential(
nn.Linear(1024, 256),
nn.ReLU(),
nn.Linear(256, 1),
nn.Sigmoid()
)
# Initialize weights
self._initialize_weights()
# Device management
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.to(self.device)
logger.info(f"Enhanced CNN with Order Book initialized")
logger.info(f"Market input shape: {market_input_shape}")
logger.info(f"Order book features: {orderbook_features}")
logger.info(f"Output actions: {n_actions}")
def _build_market_encoder(self):
"""Build traditional market data encoder"""
seq_len, feature_dim = self.market_input_shape
return nn.Sequential(
# Input projection
nn.Linear(feature_dim, 128),
nn.ReLU(),
nn.Dropout(0.2),
# Convolutional layers for temporal patterns
nn.Conv1d(128, 256, kernel_size=5, padding=2),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.2),
ResidualBlock(256, 512),
ResidualBlock(512, 512),
ResidualBlock(512, 768),
ResidualBlock(768, 768),
# Global pooling
nn.AdaptiveAvgPool1d(1),
nn.Flatten(),
# Final projection
nn.Linear(768, 1024),
nn.ReLU(),
nn.Dropout(0.3)
)
def _initialize_weights(self):
"""Initialize model weights"""
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, market_data, orderbook_data, volume_profile_data=None):
"""
Forward pass through integrated model
Args:
market_data: Traditional market data [batch, seq_len, features]
orderbook_data: Order book features [batch, orderbook_features]
volume_profile_data: Volume profile data (optional)
Returns:
Dictionary with Q-values, confidence, regime, and auxiliary predictions
"""
batch_size = market_data.size(0)
# Process market data
if len(market_data.shape) == 2:
market_data = market_data.unsqueeze(0)
# Reshape for convolutional processing
market_reshaped = market_data.view(batch_size, -1, market_data.size(-1))
market_features = self.market_encoder(market_reshaped.transpose(1, 2))
# Process order book data
orderbook_features = self.orderbook_encoder(orderbook_data)
# Process volume profile data
if volume_profile_data is not None:
volume_features = self.volume_encoder(volume_profile_data)
else:
volume_features = torch.zeros(batch_size, 256, device=self.device)
# Fuse all features
combined_features = torch.cat([
market_features,
orderbook_features,
volume_features
], dim=1)
# Feature fusion
fused_features = self.feature_fusion(combined_features)
# Apply attention
attended_features = fused_features.unsqueeze(1) # Add sequence dimension
attended_output, attention_weights = self.integrated_attention(attended_features)
final_features = attended_output.squeeze(1) # Remove sequence dimension
# Dueling architecture
advantage = self.advantage_stream(final_features)
value = self.value_stream(final_features)
# Combine value and advantage
q_values = value + advantage - advantage.mean(dim=1, keepdim=True)
# Auxiliary predictions
extrema_pred = self.extrema_head(final_features)
regime_pred = self.market_regime_head(final_features)
confidence = self.confidence_head(final_features)
return {
'q_values': q_values,
'confidence': confidence,
'extrema_prediction': extrema_pred,
'market_regime': regime_pred,
'attention_weights': attention_weights,
'integrated_features': final_features
}
def predict(self, market_data, orderbook_data, volume_profile_data=None):
"""Make prediction with confidence thresholding"""
self.eval()
with torch.no_grad():
# Convert inputs to tensors if needed
if isinstance(market_data, np.ndarray):
market_data = torch.FloatTensor(market_data).to(self.device)
if isinstance(orderbook_data, np.ndarray):
orderbook_data = torch.FloatTensor(orderbook_data).to(self.device)
# Ensure batch dimension
if len(market_data.shape) == 2:
market_data = market_data.unsqueeze(0)
if len(orderbook_data.shape) == 1:
orderbook_data = orderbook_data.unsqueeze(0)
# Forward pass
outputs = self.forward(market_data, orderbook_data, volume_profile_data)
# Get probabilities
q_values = outputs['q_values']
probs = F.softmax(q_values, dim=1)
confidence = outputs['confidence'].item()
# Action selection with confidence thresholding
if confidence >= self.confidence_threshold:
action = torch.argmax(q_values, dim=1).item()
else:
action = None # No action due to low confidence
return {
'action': action,
'probabilities': probs.cpu().numpy()[0],
'confidence': confidence,
'q_values': q_values.cpu().numpy()[0],
'extrema_prediction': F.softmax(outputs['extrema_prediction'], dim=1).cpu().numpy()[0],
'market_regime': F.softmax(outputs['market_regime'], dim=1).cpu().numpy()[0]
}
def get_feature_importance(self, market_data, orderbook_data, volume_profile_data=None):
"""Analyze feature importance using gradients"""
self.eval()
# Enable gradient computation for inputs
market_data.requires_grad_(True)
orderbook_data.requires_grad_(True)
# Forward pass
outputs = self.forward(market_data, orderbook_data, volume_profile_data)
# Compute gradients for Q-values
q_values = outputs['q_values']
q_values.sum().backward()
# Get gradient magnitudes
market_importance = torch.abs(market_data.grad).mean().item()
orderbook_importance = torch.abs(orderbook_data.grad).mean().item()
return {
'market_importance': market_importance,
'orderbook_importance': orderbook_importance,
'total_importance': market_importance + orderbook_importance
}
def save(self, path):
"""Save model state"""
torch.save({
'model_state_dict': self.state_dict(),
'market_input_shape': self.market_input_shape,
'orderbook_features': self.orderbook_features,
'n_actions': self.n_actions,
'confidence_threshold': self.confidence_threshold
}, path)
logger.info(f"Enhanced CNN with Order Book saved to {path}")
def load(self, path):
"""Load model state"""
checkpoint = torch.load(path, map_location=self.device)
self.load_state_dict(checkpoint['model_state_dict'])
logger.info(f"Enhanced CNN with Order Book loaded from {path}")
def get_memory_usage(self):
"""Get model memory usage statistics"""
total_params = sum(p.numel() for p in self.parameters())
trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
return {
'total_parameters': total_params,
'trainable_parameters': trainable_params,
'model_size_mb': total_params * 4 / (1024 * 1024), # Assuming float32
}
def create_enhanced_cnn_with_orderbook(
market_input_shape=(60, 50),
orderbook_features=100,
n_actions=2,
device='cuda'
):
"""Create and initialize enhanced CNN with order book integration"""
model = EnhancedCNNWithOrderBook(
market_input_shape=market_input_shape,
orderbook_features=orderbook_features,
n_actions=n_actions
)
if device and torch.cuda.is_available():
model = model.to(device)
memory_usage = model.get_memory_usage()
logger.info(f"Created Enhanced CNN with Order Book: {memory_usage['total_parameters']:,} parameters")
logger.info(f"Model size: {memory_usage['model_size_mb']:.1f} MB")
return model