removed COB 400M Model, text data stream wip

This commit is contained in:
Dobromir Popov
2025-09-02 16:16:01 +03:00
parent 15cc694669
commit e0fb76d9c7
7 changed files with 398 additions and 24 deletions

View File

@@ -0,0 +1,251 @@
# COB RL Model Architecture Documentation
**Status**: REMOVED (Preserved for Future Recreation)
**Date**: 2025-01-03
**Reason**: Clean up code while preserving architecture for future improvement when quality COB data is available
## Overview
The COB (Consolidated Order Book) RL Model was a massive 356M+ parameter neural network specifically designed for real-time market microstructure analysis and trading decisions based on order book data.
## Architecture Details
### Core Network: `MassiveRLNetwork`
**Input**: 2000-dimensional COB features
**Target Parameters**: ~356M (optimized from initial 1B target)
**Inference Target**: 200ms cycles for ultra-low latency trading
#### Layer Structure:
```python
class MassiveRLNetwork(nn.Module):
def __init__(self, input_size=2000, hidden_size=2048, num_layers=8):
# Input projection layer
self.input_projection = nn.Sequential(
nn.Linear(input_size, hidden_size), # 2000 -> 2048
nn.LayerNorm(hidden_size),
nn.GELU(),
nn.Dropout(0.1)
)
# 8 Transformer encoder layers (main parameter bulk)
self.encoder_layers = nn.ModuleList([
nn.TransformerEncoderLayer(
d_model=2048, # Hidden dimension
nhead=16, # 16 attention heads
dim_feedforward=6144, # 3x hidden (6K feedforward)
dropout=0.1,
activation='gelu',
batch_first=True
) for _ in range(8) # 8 layers
])
# Market regime understanding
self.regime_encoder = nn.Sequential(
nn.Linear(2048, 2560), # Expansion layer
nn.LayerNorm(2560),
nn.GELU(),
nn.Dropout(0.1),
nn.Linear(2560, 2048), # Back to hidden size
nn.LayerNorm(2048),
nn.GELU()
)
# Output heads
self.price_head = ... # 3-class: DOWN/SIDEWAYS/UP
self.value_head = ... # RL value estimation
self.confidence_head = ... # Confidence [0,1]
```
#### Parameter Breakdown:
- **Input Projection**: ~4M parameters (2000×2048 + bias)
- **Transformer Layers**: ~320M parameters (8 layers × ~40M each)
- **Regime Encoder**: ~10M parameters
- **Output Heads**: ~15M parameters
- **Total**: ~356M parameters
### Model Interface: `COBRLModelInterface`
Wrapper class providing:
- Model management and lifecycle
- Training step functionality with mixed precision
- Checkpoint saving/loading
- Prediction interface
- Memory usage estimation
#### Key Features:
```python
class COBRLModelInterface(ModelInterface):
def __init__(self):
self.model = MassiveRLNetwork().to(device)
self.optimizer = torch.optim.AdamW(lr=1e-5, weight_decay=1e-6)
self.scaler = torch.cuda.amp.GradScaler() # Mixed precision
def predict(self, cob_features) -> Dict[str, Any]:
# Returns: predicted_direction, confidence, value, probabilities
def train_step(self, features, targets) -> float:
# Combined loss: direction + value + confidence
# Uses gradient clipping and mixed precision
```
## Input Data Format
### COB Features (2000-dimensional):
The model expected structured COB features containing:
- **Order Book Levels**: Bid/ask prices and volumes at multiple levels
- **Market Microstructure**: Spread, depth, imbalance ratios
- **Temporal Features**: Order flow dynamics, recent changes
- **Aggregated Metrics**: Volume-weighted averages, momentum indicators
### Target Training Data:
```python
targets = {
'direction': torch.tensor([0, 1, 2]), # 0=DOWN, 1=SIDEWAYS, 2=UP
'value': torch.tensor([reward_value]), # RL value estimation
'confidence': torch.tensor([0.0, 1.0]) # Confidence in prediction
}
```
## Training Methodology
### Loss Function:
```python
def _calculate_loss(outputs, targets):
direction_loss = F.cross_entropy(outputs['price_logits'], targets['direction'])
value_loss = F.mse_loss(outputs['value'], targets['value'])
confidence_loss = F.binary_cross_entropy(outputs['confidence'], targets['confidence'])
total_loss = direction_loss + 0.5 * value_loss + 0.3 * confidence_loss
return total_loss
```
### Optimization:
- **Optimizer**: AdamW with low learning rate (1e-5)
- **Weight Decay**: 1e-6 for regularization
- **Gradient Clipping**: Max norm 1.0
- **Mixed Precision**: CUDA AMP for efficiency
- **Batch Processing**: Designed for mini-batch training
## Integration Points
### In Trading Orchestrator:
```python
# Model initialization
self.cob_rl_agent = COBRLModelInterface()
# During prediction
cob_features = self._extract_cob_features(symbol) # 2000-dim array
prediction = self.cob_rl_agent.predict(cob_features)
```
### COB Data Flow:
```
COB Integration -> Feature Extraction -> MassiveRLNetwork -> Trading Decision
^ ^ ^ ^
COB Provider (2000 features) (356M params) (BUY/SELL/HOLD)
```
## Performance Characteristics
### Memory Usage:
- **Model Parameters**: ~1.4GB (356M × 4 bytes)
- **Activations**: ~100MB (during inference)
- **Total GPU Memory**: ~2GB for inference, ~4GB for training
### Computational Complexity:
- **FLOPs per Inference**: ~700M operations
- **Target Latency**: 200ms per prediction
- **Hardware Requirements**: GPU with 4GB+ VRAM
## Issues Identified
### Data Quality Problems:
1. **COB Data Inconsistency**: Raw COB data had quality issues
2. **Feature Engineering**: 2000-dimensional features needed better preprocessing
3. **Missing Market Context**: Isolated COB analysis without broader market view
4. **Temporal Alignment**: COB timestamps not properly synchronized
### Architecture Limitations:
1. **Massive Parameter Count**: 356M params for specialized task may be overkill
2. **Context Isolation**: No integration with price/volume patterns from other models
3. **Training Data**: Insufficient quality labeled data for RL training
4. **Real-time Performance**: 200ms latency target challenging for 356M model
## Future Improvement Strategy
### When COB Data Quality is Resolved:
#### Phase 1: Data Infrastructure
```python
# Improved COB data pipeline
class HighQualityCOBProvider:
def __init__(self):
self.quality_validators = [...]
self.feature_normalizers = [...]
self.temporal_aligners = [...]
def get_quality_cob_features(self, symbol: str) -> np.ndarray:
# Return validated, normalized, properly timestamped COB features
pass
```
#### Phase 2: Architecture Optimization
```python
# More efficient architecture
class OptimizedCOBNetwork(nn.Module):
def __init__(self, input_size=1000, hidden_size=1024, num_layers=6):
# Reduced parameter count: ~100M instead of 356M
# Better efficiency while maintaining capability
pass
```
#### Phase 3: Integration Enhancement
```python
# Hybrid approach: COB + Market Context
class HybridCOBCNNModel(nn.Module):
def __init__(self):
self.cob_encoder = OptimizedCOBNetwork()
self.market_encoder = EnhancedCNN()
self.fusion_layer = AttentionFusion()
def forward(self, cob_features, market_features):
# Combine COB microstructure with broader market patterns
pass
```
## Removal Justification
### Why Removed Now:
1. **COB Data Quality**: Current COB data pipeline has quality issues
2. **Parameter Efficiency**: 356M params not justified without quality data
3. **Development Focus**: Better to fix data pipeline first
4. **Code Cleanliness**: Remove complexity while preserving knowledge
### Preservation Strategy:
1. **Complete Documentation**: This document preserves full architecture
2. **Interface Compatibility**: Easy to recreate interface when needed
3. **Test Framework**: Existing tests can validate future recreation
4. **Integration Points**: Clear documentation of how to reintegrate
## Recreation Checklist
When ready to recreate an improved COB model:
- [ ] Verify COB data quality and consistency
- [ ] Implement proper feature engineering pipeline
- [ ] Design architecture with appropriate parameter count
- [ ] Create comprehensive training dataset
- [ ] Implement proper integration with other models
- [ ] Validate real-time performance requirements
- [ ] Test extensively before production deployment
## Code Preservation
Original files preserved in git history:
- `NN/models/cob_rl_model.py` (full implementation)
- Integration code in `core/orchestrator.py`
- Related test files
**Note**: This documentation ensures the COB model can be accurately recreated when COB data quality issues are resolved and the massive parameter advantage can be properly evaluated.