From de62e222200b004a1ae881890d78a58882400afb Mon Sep 17 00:00:00 2001 From: Dobromir Popov Date: Tue, 27 Feb 2024 01:19:07 +0200 Subject: [PATCH] store wip --- store-py/store.py | 39 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 store-py/store.py diff --git a/store-py/store.py b/store-py/store.py new file mode 100644 index 0000000..dca89bf --- /dev/null +++ b/store-py/store.py @@ -0,0 +1,39 @@ +import faiss +import numpy as np + +# Define the knowledge graph schema +entities = ['Alice', 'Bob', 'Charlie'] +relationships = [('Alice', 'friend', 'Bob'), ('Alice', 'friend', 'Charlie')] + +# Create the database schema +db = faiss.Database('knowledge_graph.db') + +db.create_table('entities', entities) +db.create_table('relationships', relationships) + +# Implement the knowledge graph embedding +model = Word2Vec(sentences=['Alice is friends with Bob and Charlie'], dim=100) + +# Store the knowledge graph in the database +for entity in entities: + db.insert('entities', entity) +for relationship in relationships: + db.insert('relationships', relationship) + +# Implement the LLM +llm = LanguageModel(model) + +# Integrate the knowledge graph embedding with the LLM +def get_entity_vector(entity): + entity_vector = np.array(db.get('entities', entity)) + return entity_vector + +def get_relationship_vector(relationship): + relationship_vector = np.array(db.get('relationships', relationship)) + return relationship_vector + +llm.add_entity_vector_fn(get_entity_vector) +llm.add_relationship_vector_fn(get_relationship_vector) + +# Test the system +llm.process('Alice is friends with Bob and Charlie') \ No newline at end of file