added volume. better training
This commit is contained in:
parent
75c4d6602a
commit
dc5df52292
@ -44,10 +44,8 @@ CACHE_FILE = "candles_cache.json"
|
||||
# --- Constants ---
|
||||
NUM_TIMEFRAMES = 5 # e.g., ["1m", "5m", "15m", "1h", "1d"]
|
||||
NUM_INDICATORS = 20 # e.g., 20 technical indicators
|
||||
# Each channel input will have 7 features.
|
||||
FEATURES_PER_CHANNEL = 7
|
||||
# We add one extra channel for order information.
|
||||
ORDER_CHANNELS = 1
|
||||
FEATURES_PER_CHANNEL = 7 # Each channel input will have 7 features.
|
||||
ORDER_CHANNELS = 1 # One extra channel for order info.
|
||||
|
||||
# --- Positional Encoding Module ---
|
||||
class PositionalEncoding(nn.Module):
|
||||
@ -68,7 +66,6 @@ class PositionalEncoding(nn.Module):
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
||||
super().__init__()
|
||||
# Create one branch per channel.
|
||||
self.channel_branches = nn.ModuleList([
|
||||
nn.Sequential(
|
||||
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
||||
@ -77,13 +74,11 @@ class TradingModel(nn.Module):
|
||||
nn.Dropout(0.1)
|
||||
) for _ in range(num_channels)
|
||||
])
|
||||
# Embedding for channels 0..num_channels-1.
|
||||
self.timeframe_embed = nn.Embedding(num_channels, hidden_dim)
|
||||
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||
# Set batch_first=True to avoid the nested tensor warning.
|
||||
encoder_layers = TransformerEncoderLayer(
|
||||
d_model=hidden_dim, nhead=4, dim_feedforward=512,
|
||||
dropout=0.1, activation='gelu', batch_first=True
|
||||
dropout=0.1, activation='gelu', batch_first=True # Use batch_first to avoid nested tensor warning.
|
||||
)
|
||||
self.transformer = TransformerEncoder(encoder_layers, num_layers=2)
|
||||
self.attn_pool = nn.Linear(hidden_dim, 1)
|
||||
@ -104,11 +99,9 @@ class TradingModel(nn.Module):
|
||||
for i in range(num_channels):
|
||||
channel_out = self.channel_branches[i](x[:, i, :])
|
||||
channel_outs.append(channel_out)
|
||||
stacked = torch.stack(channel_outs, dim=1) # shape: [batch, channels, hidden]
|
||||
# With batch_first=True, the expected input is [batch, seq_len, hidden]
|
||||
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
|
||||
tf_embeds = self.timeframe_embed(timeframe_ids) # shape: [num_channels, hidden]
|
||||
# Expand tf_embeds to match the batch dimension.
|
||||
stacked = stacked + tf_embeds.unsqueeze(0)
|
||||
stacked = stacked + tf_embeds.unsqueeze(0) # broadcast along batch dimension.
|
||||
transformer_out = self.transformer(stacked)
|
||||
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=1)
|
||||
aggregated = (transformer_out * attn_weights).sum(dim=1)
|
||||
@ -225,32 +218,78 @@ def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||
checkpoint = torch.load(path)
|
||||
old_state = checkpoint["model_state_dict"]
|
||||
new_state = model.state_dict()
|
||||
|
||||
# Fix the size mismatch for timeframe_embed.weight.
|
||||
if "timeframe_embed.weight" in old_state:
|
||||
old_embed = old_state["timeframe_embed.weight"]
|
||||
new_embed = new_state["timeframe_embed.weight"]
|
||||
if old_embed.shape[0] < new_embed.shape[0]:
|
||||
new_embed[:old_embed.shape[0]] = old_embed
|
||||
old_state["timeframe_embed.weight"] = new_embed
|
||||
|
||||
# For channel_branches, missing keys are handled by strict=False.
|
||||
model.load_state_dict(old_state, strict=False)
|
||||
return checkpoint
|
||||
|
||||
# --- Function for Manual Trade Override ---
|
||||
def manual_trade(env):
|
||||
"""
|
||||
When no sufficient action is taken by the model, manually decide the trade.
|
||||
Find the maximum high and minimum low in the remaining window.
|
||||
If maximum occurs before minimum, we short; otherwise we long.
|
||||
The trade is closed at the candle where the chosen extreme occurs.
|
||||
"""
|
||||
current_index = env.current_index
|
||||
if current_index >= len(env.candle_window) - 1:
|
||||
env.current_index = len(env.candle_window) - 1
|
||||
return
|
||||
max_val = -float('inf')
|
||||
min_val = float('inf')
|
||||
i_max = current_index
|
||||
i_min = current_index
|
||||
for j in range(current_index + 1, len(env.candle_window)):
|
||||
high_j = env.candle_window[j]["high"]
|
||||
low_j = env.candle_window[j]["low"]
|
||||
if high_j > max_val:
|
||||
max_val = high_j
|
||||
i_max = j
|
||||
if low_j < min_val:
|
||||
min_val = low_j
|
||||
i_min = j
|
||||
# If maximum occurs before minimum, we interpret that as short (price will drop).
|
||||
if i_max < i_min:
|
||||
entry_price = env.candle_window[current_index]["open"]
|
||||
exit_price = env.candle_window[i_min]["open"]
|
||||
reward = entry_price - exit_price
|
||||
trade = {
|
||||
"entry_index": current_index,
|
||||
"entry_price": entry_price,
|
||||
"exit_index": i_min,
|
||||
"exit_price": exit_price,
|
||||
"pnl": reward
|
||||
}
|
||||
else:
|
||||
entry_price = env.candle_window[current_index]["open"]
|
||||
exit_price = env.candle_window[i_max]["open"]
|
||||
reward = exit_price - entry_price
|
||||
trade = {
|
||||
"entry_index": current_index,
|
||||
"entry_price": entry_price,
|
||||
"exit_index": i_max,
|
||||
"exit_price": exit_price,
|
||||
"pnl": reward
|
||||
}
|
||||
env.trade_history.append(trade)
|
||||
env.current_index = trade["exit_index"]
|
||||
|
||||
# --- Live HTML Chart Update ---
|
||||
def update_live_html(candles, trade_history, epoch):
|
||||
"""
|
||||
Generate a chart image that uses actual timestamps on the x-axis
|
||||
and shows a cumulative epoch PnL. The chart (with buy/sell markers and dotted lines)
|
||||
is embedded in an HTML page that auto-refreshes every 1 seconds.
|
||||
Generate a chart image with actual timestamps on the x-axis and cumulative epoch PnL.
|
||||
The chart now also plots volume as a bar chart on a secondary y-axis.
|
||||
The HTML page auto-refreshes every 10 seconds.
|
||||
"""
|
||||
from io import BytesIO
|
||||
import base64
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, 6))
|
||||
update_live_chart(ax, candles, trade_history)
|
||||
# Compute cumulative epoch PnL.
|
||||
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
|
||||
ax.set_title(f"Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}")
|
||||
buf = BytesIO()
|
||||
@ -263,7 +302,7 @@ def update_live_html(candles, trade_history, epoch):
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta http-equiv="refresh" content="1">
|
||||
<meta http-equiv="refresh" content="10">
|
||||
<title>Live Trading Chart - Epoch {epoch}</title>
|
||||
<style>
|
||||
body {{
|
||||
@ -298,27 +337,34 @@ def update_live_html(candles, trade_history, epoch):
|
||||
# --- Chart Drawing Helpers ---
|
||||
def update_live_chart(ax, candles, trade_history):
|
||||
"""
|
||||
Plot the price chart with actual timestamps on the x-axis.
|
||||
Mark BUY (green) and SELL (red) actions, and draw dotted lines between entry and exit.
|
||||
Plot the price chart with proper timestamp conversion.
|
||||
Mark BUY (green) and SELL (red) actions (with dotted lines between),
|
||||
and plot volume as a bar chart on a secondary y-axis.
|
||||
"""
|
||||
ax.clear()
|
||||
# Use the helper to convert timestamps safely.
|
||||
times = [convert_timestamp(candle["timestamp"]) for candle in candles]
|
||||
close_prices = [candle["close"] for candle in candles]
|
||||
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
|
||||
# Format x-axis date labels.
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||
for trade in trade_history:
|
||||
entry_time = convert_timestamp(candles[trade["entry_index"]]["timestamp"])
|
||||
exit_time = convert_timestamp(candles[trade["exit_index"]]["timestamp"])
|
||||
in_price = trade["entry_price"]
|
||||
out_price = trade["exit_price"]
|
||||
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY")
|
||||
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL")
|
||||
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue")
|
||||
ax.set_xlabel("Time")
|
||||
ax.set_ylabel("Price")
|
||||
ax.legend()
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||
|
||||
# Plot volume on secondary axis.
|
||||
ax2 = ax.twinx()
|
||||
volumes = [candle["volume"] for candle in candles]
|
||||
# Compute bar width in days.
|
||||
if len(times) > 1:
|
||||
times_num = mdates.date2num(times)
|
||||
bar_width = (times_num[-1] - times_num[0]) / len(times) * 0.8
|
||||
else:
|
||||
bar_width = 0.01
|
||||
ax2.bar(times, volumes, width=bar_width, alpha=0.3, color="grey", label="Volume")
|
||||
ax2.set_ylabel("Volume")
|
||||
|
||||
# Combine legends.
|
||||
lines, labels = ax.get_legend_handles_labels()
|
||||
lines2, labels2 = ax2.get_legend_handles_labels()
|
||||
ax.legend(lines + lines2, labels + labels2)
|
||||
ax.grid(True)
|
||||
fig = ax.get_figure()
|
||||
fig.autofmt_xdate()
|
||||
@ -326,14 +372,15 @@ def update_live_chart(ax, candles, trade_history):
|
||||
# --- Simulation of Trades for Visualization ---
|
||||
def simulate_trades(model, env, device, args):
|
||||
"""
|
||||
Run a simulation on the current sliding window using the model's outputs and a decision rule.
|
||||
Here we force the simulation to always take an action by comparing the predicted potentials,
|
||||
ensuring that the model is forced to trade (either BUY or SELL) rather than HOLD.
|
||||
This simulation updates env.trade_history and is used for visualization only.
|
||||
Run a simulation on the current sliding window.
|
||||
If the model produces a sufficiently strong signal (based on threshold), use its action.
|
||||
Otherwise, manually compute the trade by scanning for max/min prices.
|
||||
"""
|
||||
env.reset() # resets the window and index
|
||||
env.reset()
|
||||
while True:
|
||||
i = env.current_index
|
||||
if i >= len(env.candle_window) - 1:
|
||||
break
|
||||
state = env.get_state(i)
|
||||
current_open = env.candle_window[i]["open"]
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
@ -341,19 +388,23 @@ def simulate_trades(model, env, device, args):
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
pred_high = pred_high.item()
|
||||
pred_low = pred_low.item()
|
||||
# Force a trade: choose BUY if predicted up-move is higher (or equal), else SELL.
|
||||
# If either upward potential or downward potential exceeds the threshold, use model decision.
|
||||
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
|
||||
if (pred_high - current_open) >= (current_open - pred_low):
|
||||
action = 2 # BUY
|
||||
else:
|
||||
action = 0 # SELL
|
||||
_, _, _, done, _, _ = env.step(action)
|
||||
if done:
|
||||
else:
|
||||
# No significant signal; use manual trade computation.
|
||||
manual_trade(env)
|
||||
if env.current_index >= len(env.candle_window) - 1:
|
||||
break
|
||||
|
||||
# --- Backtest Environment with Sliding Window and Order Info ---
|
||||
class BacktestEnvironment:
|
||||
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
||||
self.candles_dict = candles_dict # full candles dict across timeframes
|
||||
self.candles_dict = candles_dict
|
||||
self.base_tf = base_tf
|
||||
self.timeframes = timeframes
|
||||
self.full_candles = candles_dict[base_tf]
|
||||
@ -361,7 +412,6 @@ class BacktestEnvironment:
|
||||
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles)
|
||||
self.window_size = window_size
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
||||
self.candle_window = self.full_candles[self.start_index: self.start_index + self.window_size]
|
||||
@ -369,10 +419,8 @@ class BacktestEnvironment:
|
||||
self.trade_history = []
|
||||
self.position = None
|
||||
return self.get_state(self.current_index)
|
||||
|
||||
def __len__(self):
|
||||
return self.window_size
|
||||
|
||||
def get_order_features(self, index):
|
||||
candle = self.candle_window[index]
|
||||
if self.position is None:
|
||||
@ -381,7 +429,6 @@ class BacktestEnvironment:
|
||||
flag = 1.0
|
||||
diff = (candle["open"] - self.position["entry_price"]) / candle["open"]
|
||||
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
|
||||
|
||||
def get_state(self, index):
|
||||
state_features = []
|
||||
base_ts = self.candle_window[index]["timestamp"]
|
||||
@ -398,7 +445,6 @@ class BacktestEnvironment:
|
||||
for _ in range(NUM_INDICATORS):
|
||||
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
base = self.candle_window
|
||||
if self.current_index >= len(base) - 1:
|
||||
@ -410,10 +456,10 @@ class BacktestEnvironment:
|
||||
next_candle = base[next_index]
|
||||
reward = 0.0
|
||||
if self.position is None:
|
||||
if action == 2:
|
||||
if action == 2: # BUY (open long)
|
||||
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
||||
else:
|
||||
if action == 0:
|
||||
if action == 0: # SELL (close long / exit trade)
|
||||
exit_price = next_candle["open"]
|
||||
reward = exit_price - self.position["entry_price"]
|
||||
trade = {
|
||||
@ -480,11 +526,14 @@ def live_preview_loop(candles, env):
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train')
|
||||
parser.add_argument('--epochs', type=int, default=100)
|
||||
parser.add_argument('--epochs', type=int, default=1000)
|
||||
parser.add_argument('--lr', type=float, default=3e-4)
|
||||
parser.add_argument('--threshold', type=float, default=0.005, help="Minimum predicted move to trigger trade (used in loss).")
|
||||
parser.add_argument('--lambda_trade', type=float, default=1.0, help="Weight for trade surrogate loss.")
|
||||
parser.add_argument('--penalty_noaction', type=float, default=10.0, help="Penalty if no action is taken (used in loss).")
|
||||
parser.add_argument('--threshold', type=float, default=0.005,
|
||||
help="Minimum predicted move to trigger trade (used in loss; model may override with manual trade).")
|
||||
parser.add_argument('--lambda_trade', type=float, default=1.0,
|
||||
help="Weight for trade surrogate loss.")
|
||||
parser.add_argument('--penalty_noaction', type=float, default=10.0,
|
||||
help="Penalty if no action is taken (used in loss).")
|
||||
parser.add_argument('--start_fresh', action='store_true', help="Start training from scratch.")
|
||||
return parser.parse_args()
|
||||
|
||||
@ -546,7 +595,7 @@ async def main():
|
||||
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes, window_size=100)
|
||||
preview_thread = threading.Thread(target=live_preview_loop, args=(env.candle_window, env), daemon=True)
|
||||
preview_thread.start()
|
||||
print("Starting live trading loop. (Forcing trade actions based on highest potential.)")
|
||||
print("Starting live trading loop. (Using model, with manual override for HOLD actions.)")
|
||||
while True:
|
||||
state = env.get_state(env.current_index)
|
||||
current_open = env.candle_window[env.current_index]["open"]
|
||||
@ -555,13 +604,15 @@ async def main():
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
pred_high = pred_high.item()
|
||||
pred_low = pred_low.item()
|
||||
# Force a trade (choose BUY if upward potential >= downward, else SELL)
|
||||
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
|
||||
if (pred_high - current_open) >= (current_open - pred_low):
|
||||
action = 2
|
||||
action = 2 # BUY
|
||||
else:
|
||||
action = 0
|
||||
action = 0 # SELL
|
||||
_, _, _, done, _, _ = env.step(action)
|
||||
if done:
|
||||
else:
|
||||
manual_trade(env)
|
||||
if env.current_index >= len(env.candle_window)-1:
|
||||
print("Reached end of simulation window; resetting environment.")
|
||||
env.reset()
|
||||
await asyncio.sleep(1)
|
||||
|
File diff suppressed because one or more lines are too long
Loading…
x
Reference in New Issue
Block a user