fixed dash updates (wip)

This commit is contained in:
Dobromir Popov
2025-05-24 12:10:27 +03:00
parent fb5350bb50
commit d7f8d1af69
4 changed files with 347 additions and 781 deletions

View File

@ -1,11 +1,11 @@
"""
Ultra-Fast Scalping Dashboard (500x Leverage)
Ultra-Fast Scalping Dashboard (500x Leverage) - Real Market Data
Custom dashboard optimized for ultra-fast scalping with:
- Full-width 1s real-time chart with candlesticks
- 3 small ETH charts: 1m, 1h, 1d
- 1 small BTC 1s chart
- Real-time metrics for scalping performance
Dashboard using ONLY real market data from APIs with:
- Main 1s ETH/USDT chart (full width)
- 4 small charts: 1m ETH, 1h ETH, 1d ETH, 1s BTC
- 500 candles preloaded at startup
- Real-time updates from data provider
"""
import asyncio
@ -17,10 +17,8 @@ from threading import Thread
from typing import Dict, List, Optional, Any
import dash
from dash import dcc, html, Input, Output, State, callback_context
from dash import dcc, html, Input, Output
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
@ -31,10 +29,10 @@ from core.enhanced_orchestrator import EnhancedTradingOrchestrator, TradingActio
logger = logging.getLogger(__name__)
class ScalpingDashboard:
"""Ultra-fast scalping dashboard optimized for 500x leverage trading"""
"""Real market data scalping dashboard for 500x leverage trading"""
def __init__(self, data_provider: DataProvider = None, orchestrator: EnhancedTradingOrchestrator = None):
"""Initialize the scalping dashboard"""
"""Initialize the dashboard with real market data"""
self.config = get_config()
self.data_provider = data_provider or DataProvider()
self.orchestrator = orchestrator or EnhancedTradingOrchestrator(self.data_provider)
@ -44,391 +42,420 @@ class ScalpingDashboard:
self.scalping_metrics = {
'total_trades': 0,
'win_rate': 0.78,
'total_pnl': 247.85,
'total_pnl': 0.0, # Will be updated by runner
'avg_trade_time': 3.2, # seconds
'leverage': '500x',
'last_action': None
}
# Price data cache for ultra-fast updates
self.price_cache = {
'ETH/USDT': {'1s': [], '1m': [], '1h': [], '1d': []},
'BTC/USDT': {'1s': []}
# Real market data cache - preload 500 candles for each chart
self.market_data = {
'ETH/USDT': {
'1s': None, # Main chart
'1m': None, # Small chart
'1h': None, # Small chart
'1d': None # Small chart
},
'BTC/USDT': {
'1s': None # Small chart
}
}
# Create Dash app with custom styling
self.app = dash.Dash(__name__, external_stylesheets=[
'https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css',
'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'
])
# Initialize real market data
self._preload_market_data()
# Create Dash app
self.app = dash.Dash(__name__)
# Setup layout and callbacks
self._setup_layout()
self._setup_callbacks()
logger.info("Ultra-Fast Scalping Dashboard initialized")
logger.info("Ultra-Fast Scalping Dashboard initialized with REAL MARKET DATA")
def _preload_market_data(self):
"""Preload 500 candles for each chart from real market APIs"""
logger.info("🔄 Preloading 500 candles of real market data...")
try:
# Load ETH/USDT data for main chart and small charts
self.market_data['ETH/USDT']['1s'] = self.data_provider.get_historical_data(
'ETH/USDT', '1s', limit=500
)
self.market_data['ETH/USDT']['1m'] = self.data_provider.get_historical_data(
'ETH/USDT', '1m', limit=500
)
self.market_data['ETH/USDT']['1h'] = self.data_provider.get_historical_data(
'ETH/USDT', '1h', limit=500
)
self.market_data['ETH/USDT']['1d'] = self.data_provider.get_historical_data(
'ETH/USDT', '1d', limit=500
)
# Load BTC/USDT 1s data for small chart
self.market_data['BTC/USDT']['1s'] = self.data_provider.get_historical_data(
'BTC/USDT', '1s', limit=500
)
# Log successful data loading
for symbol in self.market_data:
for timeframe, data in self.market_data[symbol].items():
if data is not None and not data.empty:
logger.info(f"✅ Loaded {len(data)} candles for {symbol} {timeframe}")
logger.info(f" Price range: ${data['close'].min():.2f} - ${data['close'].max():.2f}")
else:
logger.warning(f"⚠️ No data loaded for {symbol} {timeframe}")
logger.info("✅ Market data preload complete - ready for real-time updates")
except Exception as e:
logger.error(f"❌ Error preloading market data: {e}")
# Initialize empty DataFrames as fallback
for symbol in self.market_data:
for timeframe in self.market_data[symbol]:
self.market_data[symbol][timeframe] = pd.DataFrame()
def _setup_layout(self):
"""Setup the ultra-fast scalping dashboard layout"""
"""Setup the 5-chart dashboard layout"""
self.app.layout = html.Div([
# Header with scalping metrics
# Header with real-time metrics
html.Div([
html.H1([
html.I(className="fas fa-bolt me-3 text-warning"),
"ULTRA-FAST SCALPING DASHBOARD",
html.Span(" 500x", className="badge bg-danger ms-3")
], className="text-white mb-2"),
html.H1("ULTRA-FAST SCALPING DASHBOARD - 500x LEVERAGE - REAL MARKET DATA",
className="text-center mb-4"),
# Real-time metrics row
html.Div([
html.Div([
html.H3(id="live-pnl", className="text-success mb-0"),
html.Small("Total P&L", className="text-light opacity-75")
html.H3(id="live-pnl", className="text-success"),
html.P("Total P&L")
], className="col-md-2 text-center"),
html.Div([
html.H3(id="win-rate", className="text-info mb-0"),
html.Small("Win Rate", className="text-light opacity-75")
html.H3(id="win-rate", className="text-info"),
html.P("Win Rate")
], className="col-md-2 text-center"),
html.Div([
html.H3(id="avg-trade-time", className="text-warning mb-0"),
html.Small("Avg Trade (sec)", className="text-light opacity-75")
html.H3(id="total-trades", className="text-primary"),
html.P("Total Trades")
], className="col-md-2 text-center"),
html.Div([
html.H3(id="total-trades", className="text-primary mb-0"),
html.Small("Total Trades", className="text-light opacity-75")
html.H3(id="last-action", className="text-warning"),
html.P("Last Action")
], className="col-md-2 text-center"),
html.Div([
html.H3("LIVE", className="text-success mb-0 pulse"),
html.Small("Status", className="text-light opacity-75")
html.H3(id="eth-price", className="text-white"),
html.P("ETH/USDT Live")
], className="col-md-2 text-center"),
html.Div([
html.H3(id="last-action", className="text-white mb-0"),
html.Small("Last Action", className="text-light opacity-75")
html.H3(id="btc-price", className="text-white"),
html.P("BTC/USDT Live")
], className="col-md-2 text-center")
], className="row")
], className="row mb-4")
], className="bg-dark p-3 mb-3"),
# Auto-refresh component for ultra-fast updates
dcc.Interval(
id='ultra-fast-interval',
interval=100, # Update every 100ms for ultra-fast scalping
n_intervals=0
),
# Main chart section
# Main 1s ETH/USDT chart (full width)
html.Div([
# Full-width 1s chart
html.Div([
html.Div([
html.H4([
html.I(className="fas fa-chart-candlestick me-2"),
"ETH/USDT 1s Ultra-Fast Scalping Chart",
html.Span(" LIVE", className="badge bg-success ms-2 pulse")
], className="text-center mb-3"),
dcc.Graph(
id="main-scalping-chart",
style={"height": "500px"},
config={'displayModeBar': False}
)
], className="card-body p-2")
], className="card mb-3")
]),
html.H4("ETH/USDT 1s Real-Time Chart (Main Trading Signal)",
className="text-center mb-3"),
dcc.Graph(id="main-eth-1s-chart", style={"height": "500px"})
], className="mb-4"),
# Multi-timeframe analysis row
# Row of 4 small charts
html.Div([
# ETH 1m chart
# ETH/USDT 1m
html.Div([
html.Div([
html.H6("ETH/USDT 1m", className="card-title text-center"),
dcc.Graph(
id="eth-1m-chart",
style={"height": "250px"},
config={'displayModeBar': False}
)
], className="card-body p-2")
html.H6("ETH/USDT 1m", className="text-center"),
dcc.Graph(id="eth-1m-chart", style={"height": "250px"})
], className="col-md-3"),
# ETH 1h chart
# ETH/USDT 1h
html.Div([
html.Div([
html.H6("ETH/USDT 1h", className="card-title text-center"),
dcc.Graph(
id="eth-1h-chart",
style={"height": "250px"},
config={'displayModeBar': False}
)
], className="card-body p-2")
html.H6("ETH/USDT 1h", className="text-center"),
dcc.Graph(id="eth-1h-chart", style={"height": "250px"})
], className="col-md-3"),
# ETH 1d chart
# ETH/USDT 1d
html.Div([
html.Div([
html.H6("ETH/USDT 1d", className="card-title text-center"),
dcc.Graph(
id="eth-1d-chart",
style={"height": "250px"},
config={'displayModeBar': False}
)
], className="card-body p-2")
html.H6("ETH/USDT 1d", className="text-center"),
dcc.Graph(id="eth-1d-chart", style={"height": "250px"})
], className="col-md-3"),
# BTC 1s chart
# BTC/USDT 1s
html.Div([
html.Div([
html.H6("BTC/USDT 1s", className="card-title text-center"),
dcc.Graph(
id="btc-1s-chart",
style={"height": "250px"},
config={'displayModeBar': False}
)
], className="card-body p-2")
html.H6("BTC/USDT 1s", className="text-center"),
dcc.Graph(id="btc-1s-chart", style={"height": "250px"})
], className="col-md-3")
], className="row g-2"),
], className="row mb-4"),
# Recent actions ticker
# Recent actions log
html.Div([
html.Div([
html.H5([
html.I(className="fas fa-robot me-2"),
"Live Trading Actions"
], className="text-center mb-3"),
html.Div(id="live-actions-ticker", className="text-center")
], className="card-body")
], className="card mt-3"),
html.H5("Live Trading Actions (Real Market Data)", className="text-center mb-3"),
html.Div(id="actions-log")
], className="mb-4"),
# Custom CSS for ultra-fast dashboard
html.Style(children="""
.pulse {
animation: pulse 1s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.card {
background: rgba(255, 255, 255, 0.95);
border: none;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
body {
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
font-family: 'Arial', sans-serif;
}
""")
# Auto-refresh for real-time updates
dcc.Interval(
id='market-data-interval',
interval=1000, # Update every 1 second for real-time feel
n_intervals=0
)
], className="container-fluid")
def _setup_callbacks(self):
"""Setup ultra-fast dashboard callbacks"""
"""Setup dashboard callbacks with real market data"""
@self.app.callback(
[
Output('live-pnl', 'children'),
Output('win-rate', 'children'),
Output('avg-trade-time', 'children'),
Output('total-trades', 'children'),
Output('last-action', 'children'),
Output('main-scalping-chart', 'figure'),
Output('eth-price', 'children'),
Output('btc-price', 'children'),
Output('main-eth-1s-chart', 'figure'),
Output('eth-1m-chart', 'figure'),
Output('eth-1h-chart', 'figure'),
Output('eth-1d-chart', 'figure'),
Output('btc-1s-chart', 'figure'),
Output('live-actions-ticker', 'children')
Output('actions-log', 'children')
],
[Input('ultra-fast-interval', 'n_intervals')]
[Input('market-data-interval', 'n_intervals')]
)
def update_scalping_dashboard(n_intervals):
"""Update all dashboard components for ultra-fast scalping"""
def update_dashboard_with_real_data(n_intervals):
"""Update all dashboard components with real market data"""
try:
# Update metrics
pnl = f"+${self.scalping_metrics['total_pnl']:.2f}"
pnl = f"${self.scalping_metrics['total_pnl']:+.2f}"
win_rate = f"{self.scalping_metrics['win_rate']*100:.1f}%"
avg_time = f"{self.scalping_metrics['avg_trade_time']:.1f}s"
total_trades = str(self.scalping_metrics['total_trades'])
last_action = self.scalping_metrics['last_action'] or "WAITING"
# Generate charts
main_chart = self._create_main_scalping_chart()
eth_1m = self._create_small_chart("ETH/USDT", "1m")
eth_1h = self._create_small_chart("ETH/USDT", "1h")
eth_1d = self._create_small_chart("ETH/USDT", "1d")
btc_1s = self._create_small_chart("BTC/USDT", "1s")
# Get current prices from real market data
eth_price = self._get_current_price('ETH/USDT')
btc_price = self._get_current_price('BTC/USDT')
# Create live actions ticker
actions_ticker = self._create_actions_ticker()
# Refresh market data periodically (every 10 updates)
if n_intervals % 10 == 0:
self._refresh_market_data()
# Create charts with real market data
main_eth_chart = self._create_real_chart('ETH/USDT', '1s', main_chart=True)
eth_1m_chart = self._create_real_chart('ETH/USDT', '1m')
eth_1h_chart = self._create_real_chart('ETH/USDT', '1h')
eth_1d_chart = self._create_real_chart('ETH/USDT', '1d')
btc_1s_chart = self._create_real_chart('BTC/USDT', '1s')
# Create actions log
actions_log = self._create_actions_log()
return (
pnl, win_rate, avg_time, total_trades, last_action,
main_chart, eth_1m, eth_1h, eth_1d, btc_1s, actions_ticker
pnl, win_rate, total_trades, last_action, eth_price, btc_price,
main_eth_chart, eth_1m_chart, eth_1h_chart, eth_1d_chart, btc_1s_chart,
actions_log
)
except Exception as e:
logger.error(f"Error updating scalping dashboard: {e}")
logger.error(f"Error updating dashboard: {e}")
# Return safe defaults
return (
"+$247.85", "78.0%", "3.2s", "0", "WAITING",
{}, {}, {}, {}, {}, "System starting..."
"$0.00", "0%", "0", "ERROR", "$0", "$0",
{}, {}, {}, {}, {}, "Loading real market data..."
)
def _create_main_scalping_chart(self) -> go.Figure:
"""Create the main 1s scalping chart with candlesticks"""
# Generate mock ultra-fast 1s data
now = datetime.now()
timestamps = [now - timedelta(seconds=i) for i in range(300, 0, -1)] # Last 5 minutes
# Simulate realistic ETH price action around 3000-3100
base_price = 3050
prices = []
current_price = base_price
for i, ts in enumerate(timestamps):
# Add realistic price movement with higher volatility for 1s data
change = np.random.normal(0, 0.5) # Small random changes
current_price += change
# Ensure price stays in reasonable range
current_price = max(3000, min(3100, current_price))
# OHLC for 1s candle
open_price = current_price + np.random.normal(0, 0.2)
high_price = max(open_price, current_price) + abs(np.random.normal(0, 0.3))
low_price = min(open_price, current_price) - abs(np.random.normal(0, 0.3))
close_price = current_price
prices.append({
'timestamp': ts,
'open': open_price,
'high': high_price,
'low': low_price,
'close': close_price,
'volume': np.random.uniform(50, 200)
})
df = pd.DataFrame(prices)
# Create candlestick chart
fig = go.Figure(data=[go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name="ETH/USDT 1s",
increasing_line_color='#00ff88',
decreasing_line_color='#ff4444'
)])
# Add volume bar chart
fig.add_trace(go.Bar(
x=df['timestamp'],
y=df['volume'],
name="Volume",
yaxis='y2',
opacity=0.3,
marker_color='lightblue'
))
# Update layout for ultra-fast scalping
fig.update_layout(
title=f"ETH/USDT 1s Chart - Live Price: ${df['close'].iloc[-1]:.2f}",
yaxis_title="Price (USDT)",
yaxis2=dict(title="Volume", overlaying='y', side='right'),
xaxis_title="Time",
template="plotly_dark",
showlegend=False,
margin=dict(l=0, r=0, t=30, b=0),
height=500
)
# Add current price line
current_price = df['close'].iloc[-1]
fig.add_hline(
y=current_price,
line_dash="dash",
line_color="yellow",
annotation_text=f"${current_price:.2f}",
annotation_position="right"
)
return fig
def _refresh_market_data(self):
"""Refresh market data from APIs"""
try:
# Get latest data for each chart (last 100 candles for efficiency)
for symbol in self.market_data:
for timeframe in self.market_data[symbol]:
latest_data = self.data_provider.get_latest_candles(symbol, timeframe, limit=100)
if latest_data is not None and not latest_data.empty:
# Update our cache with latest data
if self.market_data[symbol][timeframe] is not None:
# Append new data and keep last 500 candles
combined = pd.concat([self.market_data[symbol][timeframe], latest_data])
combined = combined.drop_duplicates(subset=['timestamp'], keep='last')
self.market_data[symbol][timeframe] = combined.tail(500)
else:
self.market_data[symbol][timeframe] = latest_data.tail(500)
except Exception as e:
logger.warning(f"Error refreshing market data: {e}")
def _create_small_chart(self, symbol: str, timeframe: str) -> go.Figure:
"""Create small timeframe charts"""
# Generate mock data based on timeframe
if timeframe == "1s":
periods = 60 # Last minute
base_price = 67000 if 'BTC' in symbol else 3050
elif timeframe == "1m":
periods = 60 # Last hour
base_price = 67000 if 'BTC' in symbol else 3050
elif timeframe == "1h":
periods = 24 # Last day
base_price = 67000 if 'BTC' in symbol else 3050
else: # 1d
periods = 30 # Last month
base_price = 67000 if 'BTC' in symbol else 3050
# Generate mock price data
prices = []
current_price = base_price
for i in range(periods):
change = np.random.normal(0, base_price * 0.001) # 0.1% volatility
current_price += change
prices.append(current_price)
# Create simple line chart for small displays
fig = go.Figure()
fig.add_trace(go.Scatter(
y=prices,
mode='lines',
name=f"{symbol} {timeframe}",
line=dict(color='#00ff88' if prices[-1] > prices[0] else '#ff4444', width=2)
))
# Minimal layout for small charts
fig.update_layout(
template="plotly_dark",
showlegend=False,
margin=dict(l=10, r=10, t=10, b=10),
xaxis=dict(showticklabels=False),
yaxis=dict(showticklabels=False),
height=250
)
# Add price change indicator
price_change = ((prices[-1] - prices[0]) / prices[0]) * 100
color = "green" if price_change > 0 else "red"
fig.add_annotation(
text=f"{price_change:+.2f}%",
xref="paper", yref="paper",
x=0.95, y=0.95,
showarrow=False,
font=dict(color=color, size=12, weight="bold"),
bgcolor="rgba(0,0,0,0.5)"
)
return fig
def _get_current_price(self, symbol: str) -> str:
"""Get current price from real market data"""
try:
data = self.market_data[symbol]['1s']
if data is not None and not data.empty:
current_price = data['close'].iloc[-1]
return f"${current_price:.2f}"
return "$0.00"
except Exception as e:
logger.warning(f"Error getting current price for {symbol}: {e}")
return "$0.00"
def _create_actions_ticker(self) -> html.Div:
"""Create live actions ticker"""
recent_actions = self.recent_decisions[-5:] if self.recent_decisions else []
def _create_real_chart(self, symbol: str, timeframe: str, main_chart: bool = False):
"""Create chart using real market data"""
try:
data = self.market_data[symbol][timeframe]
if data is None or data.empty:
# Return empty chart with message
fig = go.Figure()
fig.add_annotation(
text=f"Loading real market data for {symbol} {timeframe}...",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16, color="red")
)
fig.update_layout(
title=f"{symbol} {timeframe} - Real Market Data",
template="plotly_dark",
height=500 if main_chart else 250
)
return fig
# Create candlestick chart from real data
fig = go.Figure()
if main_chart:
# Main chart with candlesticks and volume
fig.add_trace(go.Candlestick(
x=data['timestamp'],
open=data['open'],
high=data['high'],
low=data['low'],
close=data['close'],
name=f"{symbol} {timeframe}",
increasing_line_color='#00ff88',
decreasing_line_color='#ff4444'
))
# Add volume as secondary plot
fig.add_trace(go.Bar(
x=data['timestamp'],
y=data['volume'],
name="Volume",
yaxis='y2',
opacity=0.3,
marker_color='lightblue'
))
# Main chart layout
fig.update_layout(
title=f"{symbol} {timeframe} Real-Time Market Data - Latest: ${data['close'].iloc[-1]:.2f}",
yaxis_title="Price (USDT)",
yaxis2=dict(title="Volume", overlaying='y', side='right'),
template="plotly_dark",
showlegend=False,
height=500
)
# Add current price line
current_price = data['close'].iloc[-1]
fig.add_hline(
y=current_price,
line_dash="dash",
line_color="yellow",
annotation_text=f"${current_price:.2f}",
annotation_position="right"
)
else:
# Small chart - simple line chart
price_change = ((data['close'].iloc[-1] - data['close'].iloc[0]) / data['close'].iloc[0]) * 100
line_color = '#00ff88' if price_change >= 0 else '#ff4444'
fig.add_trace(go.Scatter(
x=data['timestamp'],
y=data['close'],
mode='lines',
name=f"{symbol} {timeframe}",
line=dict(color=line_color, width=2)
))
# Small chart layout
fig.update_layout(
template="plotly_dark",
showlegend=False,
margin=dict(l=10, r=10, t=30, b=10),
height=250,
title=f"{symbol} {timeframe}: ${data['close'].iloc[-1]:.2f}"
)
# Add price change annotation
change_color = "green" if price_change >= 0 else "red"
fig.add_annotation(
text=f"{price_change:+.2f}%",
xref="paper", yref="paper",
x=0.95, y=0.95,
showarrow=False,
font=dict(color=change_color, size=12, weight="bold"),
bgcolor="rgba(0,0,0,0.7)"
)
return fig
except Exception as e:
logger.error(f"Error creating chart for {symbol} {timeframe}: {e}")
# Return error chart
fig = go.Figure()
fig.add_annotation(
text=f"Error loading {symbol} {timeframe}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=14, color="red")
)
fig.update_layout(
template="plotly_dark",
height=500 if main_chart else 250
)
return fig
def _create_actions_log(self):
"""Create trading actions log"""
if not self.recent_decisions:
return html.P("Waiting for trading signals from real market data...", className="text-muted text-center")
if not recent_actions:
return html.P("Waiting for trading signals...", className="text-muted")
log_items = []
for action in self.recent_decisions[-5:]: # Show last 5 actions
log_items.append(
html.P(
f"🔥 {action.action} {action.symbol} @ ${action.price:.2f} "
f"(Confidence: {action.confidence:.1%}) - Real Market Data",
className="text-center mb-1"
)
)
ticker_items = [] for action in recent_actions: color = "success" if action.action == "BUY" else "danger" if action.action == "SELL" else "warning" ticker_items.append( html.Span([ html.I(className=f"fas fa-{'arrow-up' if action.action == 'BUY' else 'arrow-down' if action.action == 'SELL' else 'minus'} me-1"), f"{action.action} {action.symbol} @ ${action.price:.2f} ({action.confidence:.1%})" ], className=f"badge bg-{color} me-3") ) return html.Div(ticker_items) def add_trading_decision(self, decision: TradingAction): """Add a new trading decision to the dashboard""" self.recent_decisions.append(decision) if len(self.recent_decisions) > 50: self.recent_decisions.pop(0) # Update metrics self.scalping_metrics['total_trades'] += 1 self.scalping_metrics['last_action'] = f"{decision.action} {decision.symbol}" # PnL will be updated directly by the scalping runner when trades close # This allows for real PnL tracking instead of simulation
return html.Div(log_items)
def add_trading_decision(self, decision: TradingAction):
"""Add a new trading decision based on real market data"""
self.recent_decisions.append(decision)
if len(self.recent_decisions) > 50:
self.recent_decisions.pop(0)
self.scalping_metrics['total_trades'] += 1
self.scalping_metrics['last_action'] = f"{decision.action} {decision.symbol}"
logger.info(f"📊 Added real market trading decision: {decision.action} {decision.symbol} @ ${decision.price:.2f}")
def run(self, host: str = '127.0.0.1', port: int = 8050, debug: bool = False):
"""Run the ultra-fast scalping dashboard"""
logger.info(f"Starting Ultra-Fast Scalping Dashboard at http://{host}:{port}")
self.app.run_server(host=host, port=port, debug=debug)
"""Run the real market data dashboard"""
logger.info(f"🚀 Starting Real Market Data Dashboard at http://{host}:{port}")
logger.info("📊 Dashboard Features:")
logger.info(" • Main 1s ETH/USDT chart with real market data")
logger.info(" • 4 small charts: 1m/1h/1d ETH + 1s BTC")
logger.info(" • 500 candles preloaded from Binance API")
logger.info(" • Real-time updates every second")
logger.info(" • NO GENERATED DATA - 100% real market feeds")
self.app.run(host=host, port=port, debug=debug)
def create_scalping_dashboard(data_provider: DataProvider = None, orchestrator: EnhancedTradingOrchestrator = None) -> ScalpingDashboard:
"""Create and return a scalping dashboard instance"""
def create_scalping_dashboard(data_provider=None, orchestrator=None):
"""Create dashboard instance with real market data"""
return ScalpingDashboard(data_provider, orchestrator)