fix dash actions

This commit is contained in:
Dobromir Popov
2025-07-04 02:24:18 +03:00
parent cf91e090c8
commit d0cf04536c
7 changed files with 309 additions and 10 deletions

View File

@ -81,8 +81,8 @@ orchestrator:
# Model weights for decision combination
cnn_weight: 0.7 # Weight for CNN predictions
rl_weight: 0.3 # Weight for RL decisions
confidence_threshold: 0.20 # Lowered from 0.35 for low-volatility markets
confidence_threshold_close: 0.10 # Lowered from 0.15 for easier exits
confidence_threshold: 0.05 # Very low threshold for training and simulation
confidence_threshold_close: 0.05 # Very low threshold for easier exits
decision_frequency: 30 # Seconds between decisions (faster)
# Multi-symbol coordination
@ -154,7 +154,7 @@ trading:
# MEXC Trading API Configuration
mexc_trading:
enabled: true
trading_mode: live # simulation, testnet, live
trading_mode: simulation # simulation, testnet, live
# FIXED: Meaningful position sizes for learning
base_position_usd: 25.0 # $25 base position (was $1)
@ -165,7 +165,7 @@ mexc_trading:
max_daily_trades: 100
max_daily_loss_usd: 200.0
max_concurrent_positions: 3
min_trade_interval_seconds: 30
min_trade_interval_seconds: 5 # Reduced for testing and training
# Order configuration
order_type: market # market or limit

View File

@ -299,7 +299,36 @@ class TradingOrchestrator:
self.model_states['decision']['current_loss'] = 0.0089
self.model_states['decision']['best_loss'] = 0.0065
logger.info("ML models initialization completed")
# CRITICAL: Register models with the model registry
logger.info("Registering models with model registry...")
# Register RL Agent
if self.rl_agent:
try:
self.register_model(self.rl_agent, weight=0.3)
logger.info("RL Agent registered successfully")
except Exception as e:
logger.error(f"Failed to register RL Agent: {e}")
# Register CNN Model
if self.cnn_model:
try:
self.register_model(self.cnn_model, weight=0.7)
logger.info("CNN Model registered successfully")
except Exception as e:
logger.error(f"Failed to register CNN Model: {e}")
# Register Extrema Trainer
if self.extrema_trainer:
try:
self.register_model(self.extrema_trainer, weight=0.2)
logger.info("Extrema Trainer registered successfully")
except Exception as e:
logger.error(f"Failed to register Extrema Trainer: {e}")
# Show registered models count
registered_count = len(self.model_registry.models) if self.model_registry else 0
logger.info(f"ML models initialization completed - {registered_count} models registered")
except Exception as e:
logger.error(f"Error initializing ML models: {e}")

View File

@ -230,6 +230,14 @@ class TradingExecutor:
# Get available balance for the quote asset
available_balance = self.exchange.get_balance(quote_asset)
# If USDC balance is insufficient, check USDT as fallback (for MEXC compatibility)
if available_balance < required_capital and quote_asset == 'USDC':
usdt_balance = self.exchange.get_balance('USDT')
if usdt_balance >= required_capital:
available_balance = usdt_balance
quote_asset = 'USDT' # Use USDT instead
logger.info(f"BALANCE CHECK: Using USDT fallback balance for {symbol}")
logger.info(f"BALANCE CHECK: Symbol: {symbol}, Action: {action}, Required: ${required_capital:.2f} {quote_asset}, Available: ${available_balance:.2f} {quote_asset}")
if available_balance < required_capital:

View File

@ -0,0 +1,101 @@
#!/usr/bin/env python3
"""
Test script to debug orchestrator prediction issues
"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from core.orchestrator import TradingOrchestrator
from core.data_provider import DataProvider
import asyncio
import logging
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
async def test_orchestrator_predictions():
"""Test orchestrator prediction generation"""
logger.info("=" * 60)
logger.info("TESTING ORCHESTRATOR PREDICTIONS")
logger.info("=" * 60)
# Initialize components
logger.info("1. Initializing orchestrator...")
data_provider = DataProvider()
orchestrator = TradingOrchestrator(data_provider)
# Check configuration
logger.info("2. Checking orchestrator configuration...")
logger.info(f" Confidence threshold: {orchestrator.confidence_threshold}")
logger.info(f" Confidence threshold close: {orchestrator.confidence_threshold_close}")
logger.info(f" Model weights: {orchestrator.model_weights}")
# Check registered models
logger.info("3. Checking registered models...")
if hasattr(orchestrator, 'model_registry'):
# Check what methods are available
registry_methods = [method for method in dir(orchestrator.model_registry) if not method.startswith('_')]
logger.info(f" Model registry methods: {registry_methods}")
# Check if we have models
if hasattr(orchestrator, 'rl_agent'):
logger.info(f" RL Agent available: {orchestrator.rl_agent is not None}")
if hasattr(orchestrator, 'cnn_model'):
logger.info(f" CNN Model available: {orchestrator.cnn_model is not None}")
if hasattr(orchestrator, 'extrema_trainer'):
logger.info(f" Extrema Trainer available: {orchestrator.extrema_trainer is not None}")
else:
logger.info(" No model registry found")
# Test prediction generation
logger.info("4. Testing prediction generation...")
symbol = 'ETH/USDT'
try:
# Get all predictions
predictions = await orchestrator._get_all_predictions(symbol)
logger.info(f" Total predictions: {len(predictions)}")
for i, pred in enumerate(predictions):
logger.info(f" Prediction {i+1}: {pred.action} (confidence: {pred.confidence:.3f}, model: {pred.model_name})")
# Test decision making
logger.info("5. Testing decision making...")
for i in range(3): # Test multiple decisions
decision = await orchestrator.make_trading_decision(symbol)
if decision:
logger.info(f" Decision {i+1}: {decision.action} (confidence: {decision.confidence:.3f})")
logger.info(f" Reasoning: {decision.reasoning}")
else:
logger.info(f" Decision {i+1}: None")
# Wait a bit between decisions
await asyncio.sleep(1)
# Test fallback prediction
logger.info("6. Testing fallback prediction...")
current_price = data_provider.get_current_price(symbol)
if current_price:
fallback = await orchestrator._generate_fallback_prediction(symbol, current_price)
if fallback:
logger.info(f" Fallback prediction: {fallback.action} (confidence: {fallback.confidence:.3f})")
else:
logger.info(" No fallback prediction generated")
else:
logger.info(" No current price available for fallback test")
except Exception as e:
logger.error(f" Error testing predictions: {e}")
import traceback
traceback.print_exc()
logger.info("=" * 60)
logger.info("TEST COMPLETE")
logger.info("=" * 60)
if __name__ == "__main__":
asyncio.run(test_orchestrator_predictions())

View File

@ -0,0 +1,125 @@
#!/usr/bin/env python3
"""
Test script to debug trading execution issues
"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from core.trading_executor import TradingExecutor
from core.orchestrator import TradingOrchestrator
from core.data_provider import DataProvider
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_trading_execution():
"""Test trading execution in simulation mode"""
logger.info("=" * 60)
logger.info("TESTING TRADING EXECUTION")
logger.info("=" * 60)
# Initialize components
logger.info("1. Initializing components...")
data_provider = DataProvider()
orchestrator = TradingOrchestrator(data_provider)
trading_executor = TradingExecutor()
# Check trading executor status
logger.info("2. Checking trading executor status...")
logger.info(f" Trading enabled: {trading_executor.trading_enabled}")
logger.info(f" Trading mode: {trading_executor.trading_mode}")
logger.info(f" Simulation mode: {trading_executor.simulation_mode}")
logger.info(f" Exchange connected: {trading_executor.exchange is not None}")
# Check account balance
logger.info("3. Checking account balance...")
try:
balance = trading_executor.get_account_balance()
logger.info(f" Account balance: {balance}")
except Exception as e:
logger.error(f" Error getting balance: {e}")
# Test manual trade execution
logger.info("4. Testing manual trade execution...")
symbol = 'ETH/USDT'
action = 'BUY'
quantity = 0.01
try:
logger.info(f" Executing: {action} {quantity} {symbol}")
result = trading_executor.execute_trade(symbol, action, quantity)
logger.info(f" Result: {result}")
if result:
# Check positions
positions = trading_executor.get_positions()
logger.info(f" Positions after trade: {positions}")
except Exception as e:
logger.error(f" Error executing trade: {e}")
import traceback
traceback.print_exc()
# Test orchestrator decision making
logger.info("5. Testing orchestrator decisions...")
try:
import asyncio
async def test_decision():
decision = await orchestrator.make_trading_decision(symbol)
if decision:
logger.info(f" Decision: {decision.action} (confidence: {decision.confidence:.3f})")
# Test executing the decision
if decision.action != 'HOLD':
result = trading_executor.execute_signal(
symbol=decision.symbol,
action=decision.action,
confidence=decision.confidence,
current_price=decision.price
)
logger.info(f" Execution result: {result}")
else:
logger.info(" No decision made")
asyncio.run(test_decision())
except Exception as e:
logger.error(f" Error testing orchestrator: {e}")
import traceback
traceback.print_exc()
# Check safety conditions
logger.info("6. Testing safety conditions...")
try:
# Check if safety conditions are blocking trades
symbol_test = 'ETH/USDT'
action_test = 'BUY'
# Access private method for testing (not ideal but for debugging)
if hasattr(trading_executor, '_check_safety_conditions'):
safety_ok = trading_executor._check_safety_conditions(symbol_test, action_test)
logger.info(f" Safety conditions OK for {action_test} {symbol_test}: {safety_ok}")
# Check individual safety conditions
config = trading_executor.mexc_config
logger.info(f" Emergency stop: {config.get('emergency_stop', False)}")
logger.info(f" Allowed symbols: {config.get('allowed_symbols', [])}")
logger.info(f" Daily loss: {trading_executor.daily_loss} / {config.get('max_daily_loss_usd', 5.0)}")
logger.info(f" Daily trades: {trading_executor.daily_trades} / {config.get('max_trades_per_hour', 2) * 24}")
logger.info(f" Concurrent positions: {len(trading_executor.positions)} / {config.get('max_concurrent_positions', 1)}")
except Exception as e:
logger.error(f" Error checking safety conditions: {e}")
logger.info("=" * 60)
logger.info("TEST COMPLETE")
logger.info("=" * 60)
if __name__ == "__main__":
test_trading_execution()

View File

@ -124,7 +124,7 @@ class CheckpointManager:
self._rotate_checkpoints(model_name)
self._save_metadata()
logger.info(f"Saved checkpoint: {checkpoint_id} (score: {performance_score:.4f})")
logger.debug(f"Saved checkpoint: {checkpoint_id} (score: {performance_score:.4f})")
return metadata
except Exception as e:
@ -232,7 +232,7 @@ class CheckpointManager:
# Save more frequently during active training (every 5th attempt instead of 10th)
if random.random() < 0.2: # 20% chance to save anyway
logger.info(f"Saving checkpoint for {model_name} - periodic save during active training")
logger.debug(f"Saving checkpoint for {model_name} - periodic save during active training")
return True
return False
@ -268,7 +268,7 @@ class CheckpointManager:
file_path = Path(checkpoint.file_path)
if file_path.exists():
file_path.unlink()
logger.info(f"Rotated out checkpoint: {checkpoint.checkpoint_id}")
logger.debug(f"Rotated out checkpoint: {checkpoint.checkpoint_id}")
except Exception as e:
logger.error(f"Error removing rotated checkpoint {checkpoint.checkpoint_id}: {e}")

View File

@ -4850,17 +4850,19 @@ class CleanTradingDashboard:
logger.error(f"Error initiating orchestrator connection: {e}")
async def _on_trading_decision(self, decision):
"""Handle trading decision from orchestrator."""
"""Handle trading decision from orchestrator and execute through trading executor."""
try:
# Handle both object and dict formats
if hasattr(decision, 'action'):
action = getattr(decision, 'action', 'HOLD')
symbol = getattr(decision, 'symbol', 'ETH/USDT')
confidence = getattr(decision, 'confidence', 0.0)
price = getattr(decision, 'price', None)
else:
action = decision.get('action', 'HOLD')
symbol = decision.get('symbol', 'ETH/USDT')
confidence = decision.get('confidence', 0.0)
price = decision.get('price', None)
if action == 'HOLD':
return
@ -4886,11 +4888,45 @@ class CleanTradingDashboard:
dashboard_decision['timestamp'] = datetime.now()
dashboard_decision['executed'] = False
logger.info(f"[ORCHESTRATOR SIGNAL] Received: {action} for {symbol} (confidence: {confidence:.3f})")
# EXECUTE THE DECISION THROUGH TRADING EXECUTOR
if self.trading_executor and confidence > 0.5: # Only execute high confidence signals
try:
logger.info(f"[ORCHESTRATOR EXECUTION] Attempting to execute {action} for {symbol} via trading executor...")
success = self.trading_executor.execute_signal(
symbol=symbol,
action=action,
confidence=confidence,
current_price=price
)
if success:
dashboard_decision['executed'] = True
dashboard_decision['execution_time'] = datetime.now()
logger.info(f"[ORCHESTRATOR EXECUTION] SUCCESS: {action} executed for {symbol}")
# Sync position from trading executor after execution
self._sync_position_from_executor(symbol)
else:
logger.warning(f"[ORCHESTRATOR EXECUTION] FAILED: {action} execution blocked for {symbol}")
dashboard_decision['execution_failure'] = True
except Exception as e:
logger.error(f"[ORCHESTRATOR EXECUTION] ERROR: Failed to execute {action} for {symbol}: {e}")
dashboard_decision['execution_error'] = str(e)
else:
if not self.trading_executor:
logger.warning("[ORCHESTRATOR EXECUTION] No trading executor available")
elif confidence <= 0.5:
logger.info(f"[ORCHESTRATOR EXECUTION] Low confidence signal ignored: {action} for {symbol} (confidence: {confidence:.3f})")
# Store decision in dashboard
self.recent_decisions.append(dashboard_decision)
if len(self.recent_decisions) > 200:
self.recent_decisions.pop(0)
logger.info(f"[ORCHESTRATOR SIGNAL] Received: {action} for {symbol} (confidence: {confidence:.3f})")
except Exception as e:
logger.error(f"Error handling trading decision: {e}")