fix realtime training
This commit is contained in:
113
REALTIME_TRAINING_FIXES.md
Normal file
113
REALTIME_TRAINING_FIXES.md
Normal file
@@ -0,0 +1,113 @@
|
||||
# Realtime RL Training Fixes
|
||||
|
||||
## Issues Identified and Fixed
|
||||
|
||||
### 1. Inplace Operation Errors During Backward Pass
|
||||
|
||||
**Problem**:
|
||||
```
|
||||
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
|
||||
```
|
||||
|
||||
**Root Cause**:
|
||||
- Tensor operations like `x = x + position_emb` were modifying tensors that are part of the computation graph
|
||||
- The regime detector's weighted sum was creating shared memory references
|
||||
- Layer outputs were being reused without cloning
|
||||
|
||||
**Fix Applied**:
|
||||
- Added `.clone()` to create new tensors instead of modifying existing ones:
|
||||
- `x = price_emb.clone() + cob_emb + tech_emb + market_emb`
|
||||
- `x = layer_output['output'].clone()`
|
||||
- `adapted_output = torch.sum(regime_stack * regime_weights, dim=0).clone()`
|
||||
|
||||
**Files Modified**:
|
||||
- `NN/models/advanced_transformer_trading.py` (lines 638, 668, 223)
|
||||
|
||||
---
|
||||
|
||||
### 2. Missing 'actions' Key in Batch
|
||||
|
||||
**Problem**:
|
||||
```
|
||||
WARNING - No 'actions' key in batch - skipping this training step
|
||||
WARNING - No timeframe data available for transformer forward pass
|
||||
```
|
||||
|
||||
**Root Cause**:
|
||||
- Per-candle training was creating incomplete batches without proper validation
|
||||
- Batches were being passed to training even when required data was missing
|
||||
|
||||
**Fix Applied**:
|
||||
- Added validation before training to ensure all required keys are present:
|
||||
```python
|
||||
required_keys = ['actions', 'price_data_1m', 'price_data_1h', 'price_data_1d']
|
||||
missing_keys = [k for k in required_keys if k not in batch or batch[k] is None]
|
||||
if missing_keys:
|
||||
logger.warning(f"Per-candle training skipped: Missing required keys: {missing_keys}")
|
||||
return
|
||||
```
|
||||
|
||||
**Files Modified**:
|
||||
- `ANNOTATE/core/real_training_adapter.py` (lines 3520-3527)
|
||||
|
||||
---
|
||||
|
||||
### 3. Checkpoint File Deletion Race Condition
|
||||
|
||||
**Problem**:
|
||||
```
|
||||
WARNING - Could not remove checkpoint: [Errno 2] No such file or directory
|
||||
```
|
||||
|
||||
**Root Cause**:
|
||||
- Checkpoint cleanup was running immediately after saving
|
||||
- Files were being deleted before they were fully written to disk
|
||||
- No existence check before deletion
|
||||
|
||||
**Fix Applied**:
|
||||
- Added 0.5 second delay before cleanup to ensure files are fully written
|
||||
- Added existence checks before attempting to delete files:
|
||||
```python
|
||||
import time
|
||||
time.sleep(0.5) # Ensure files are fully written
|
||||
|
||||
# Double-check file still exists before deleting
|
||||
if os.path.exists(checkpoint['path']):
|
||||
os.remove(checkpoint['path'])
|
||||
```
|
||||
|
||||
**Files Modified**:
|
||||
- `ANNOTATE/core/real_training_adapter.py` (lines 2254-2285, 3710-3745)
|
||||
|
||||
---
|
||||
|
||||
## Expected Results After Fixes
|
||||
|
||||
1. **No more inplace operation errors** - Gradients will flow correctly during backward pass
|
||||
2. **Proper training on valid batches** - Only batches with complete data will be trained
|
||||
3. **No checkpoint deletion errors** - Files will be fully written before cleanup attempts
|
||||
4. **Improved training metrics** - Loss and accuracy should show meaningful values instead of 0.0
|
||||
|
||||
## Testing Recommendations
|
||||
|
||||
1. Run the realtime training again and monitor for:
|
||||
- Absence of inplace operation errors
|
||||
- Reduction in "skipping this training step" warnings
|
||||
- No checkpoint deletion errors
|
||||
- Non-zero loss and accuracy values
|
||||
|
||||
2. Check GPU utilization:
|
||||
- Should see actual GPU usage during training (currently showing 0.0%)
|
||||
- Memory usage should increase during forward/backward passes
|
||||
|
||||
3. Monitor training progress:
|
||||
- Loss should decrease over epochs
|
||||
- Accuracy should increase over epochs
|
||||
- Checkpoints should save successfully
|
||||
|
||||
## Additional Notes
|
||||
|
||||
- The fixes maintain backward compatibility with existing code
|
||||
- No changes to model architecture or training logic
|
||||
- Only defensive programming and proper tensor handling added
|
||||
- All changes follow PyTorch best practices for gradient computation
|
||||
Reference in New Issue
Block a user