wip
This commit is contained in:
parent
2ec75e66cb
commit
c8043a9dcd
@ -7,6 +7,9 @@ if sys.platform == 'win32':
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import argparse
|
||||
import threading
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -15,20 +18,22 @@ from collections import deque
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
import ccxt.async_support as ccxt
|
||||
import argparse
|
||||
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
||||
import math
|
||||
|
||||
|
||||
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
# --- Directories ---
|
||||
LAST_DIR = os.path.join("models", "last")
|
||||
BEST_DIR = os.path.join("models", "best")
|
||||
os.makedirs(LAST_DIR, exist_ok=True)
|
||||
os.makedirs(BEST_DIR, exist_ok=True)
|
||||
CACHE_FILE = "candles_cache.json"
|
||||
|
||||
# --- New Constants ---
|
||||
NUM_TIMEFRAMES = 5 # Example: ["1m", "5m", "15m", "1h", "1d"]
|
||||
NUM_INDICATORS = 20 # Example: 20 technical indicators
|
||||
FEATURES_PER_CHANNEL = 7 # HLOC + SMA_close + SMA_volume
|
||||
# --- Constants ---
|
||||
NUM_TIMEFRAMES = 5 # Example: ["1m", "5m", "15m", "1h", "1d"]
|
||||
NUM_INDICATORS = 20 # Example: 20 technical indicators
|
||||
FEATURES_PER_CHANNEL = 7 # e.g. HLOC, SMA_close, SMA_volume
|
||||
|
||||
# --- Positional Encoding Module ---
|
||||
class PositionalEncoding(nn.Module):
|
||||
@ -58,107 +63,207 @@ class TradingModel(nn.Module):
|
||||
nn.Dropout(0.1)
|
||||
) for _ in range(num_channels)
|
||||
])
|
||||
|
||||
self.timeframe_embed = nn.Embedding(num_timeframes, hidden_dim)
|
||||
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||
|
||||
# Transformer
|
||||
encoder_layers = TransformerEncoderLayer(
|
||||
d_model=hidden_dim, nhead=4, dim_feedforward=512,
|
||||
dropout=0.1, activation='gelu', batch_first=False
|
||||
)
|
||||
self.transformer = TransformerEncoder(encoder_layers, num_layers=2)
|
||||
|
||||
# Attention Pooling
|
||||
self.attn_pool = nn.Linear(hidden_dim, 1)
|
||||
|
||||
# Prediction Heads
|
||||
self.high_pred = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim//2),
|
||||
nn.Linear(hidden_dim, hidden_dim // 2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim//2, 1)
|
||||
nn.Linear(hidden_dim // 2, 1)
|
||||
)
|
||||
self.low_pred = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim//2),
|
||||
nn.Linear(hidden_dim, hidden_dim // 2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim//2, 1)
|
||||
nn.Linear(hidden_dim // 2, 1)
|
||||
)
|
||||
|
||||
def forward(self, x, timeframe_ids):
|
||||
# x shape: [batch_size, num_channels, FEATURES_PER_CHANNEL]
|
||||
batch_size, num_channels, _ = x.shape
|
||||
|
||||
# Process each channel through its branch
|
||||
channel_outs = []
|
||||
for i in range(num_channels):
|
||||
channel_out = self.channel_branches[i](x[:, i, :])
|
||||
channel_outs.append(channel_out)
|
||||
|
||||
# Stack and add timeframe embeddings
|
||||
channel_outs = [self.channel_branches[i](x[:, i, :]) for i in range(num_channels)]
|
||||
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
|
||||
stacked = stacked.permute(1, 0, 2) # [channels, batch, hidden]
|
||||
|
||||
# Add timeframe embeddings to each channel
|
||||
tf_embeds = self.timeframe_embed(timeframe_ids).unsqueeze(1)
|
||||
stacked = stacked + tf_embeds
|
||||
|
||||
# Apply Transformer
|
||||
src_mask = torch.triu(torch.ones(stacked.size(0), stacked.size(0)), diagonal=1).bool().to(x.device)
|
||||
transformer_out = self.transformer(stacked, src_mask=src_mask)
|
||||
|
||||
# Attention Pooling over channels
|
||||
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=0)
|
||||
aggregated = (transformer_out * attn_weights).sum(dim=0)
|
||||
|
||||
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
|
||||
|
||||
# --- Enhanced Data Processing ---
|
||||
# Here you need to have the helper functions get_aligned_candle_with_index and get_features_for_tf
|
||||
# They must be defined elsewhere in your code.
|
||||
# --- Technical Indicator Helper Functions ---
|
||||
def compute_sma(candles_list, index, period=10):
|
||||
start = max(0, index - period + 1)
|
||||
values = [candle["close"] for candle in candles_list[start:index+1]]
|
||||
return sum(values) / len(values) if values else 0.0
|
||||
|
||||
def compute_sma_volume(candles_list, index, period=10):
|
||||
start = max(0, index - period + 1)
|
||||
values = [candle["volume"] for candle in candles_list[start:index+1]]
|
||||
return sum(values) / len(values) if values else 0.0
|
||||
|
||||
def get_aligned_candle_with_index(candles_list, target_ts):
|
||||
best_idx = 0
|
||||
for i, candle in enumerate(candles_list):
|
||||
if candle["timestamp"] <= target_ts:
|
||||
best_idx = i
|
||||
else:
|
||||
break
|
||||
return best_idx, candles_list[best_idx]
|
||||
|
||||
def get_features_for_tf(candles_list, index, period=10):
|
||||
candle = candles_list[index]
|
||||
f_open = candle["open"]
|
||||
f_high = candle["high"]
|
||||
f_low = candle["low"]
|
||||
f_close = candle["close"]
|
||||
f_volume = candle["volume"]
|
||||
sma_close = compute_sma(candles_list, index, period)
|
||||
sma_volume = compute_sma_volume(candles_list, index, period)
|
||||
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
||||
|
||||
# --- Caching and Checkpoint Functions ---
|
||||
def load_candles_cache(filename):
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
print(f"Loaded cached data from {filename}.")
|
||||
return data
|
||||
except Exception as e:
|
||||
print("Error reading cache file:", e)
|
||||
return {}
|
||||
|
||||
def save_candles_cache(filename, candles_dict):
|
||||
try:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(candles_dict, f)
|
||||
except Exception as e:
|
||||
print("Error saving cache file:", e)
|
||||
|
||||
def maintain_checkpoint_directory(directory, max_files=10):
|
||||
files = os.listdir(directory)
|
||||
if len(files) > max_files:
|
||||
full_paths = [os.path.join(directory, f) for f in files]
|
||||
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
||||
for f in full_paths[: len(files) - max_files]:
|
||||
os.remove(f)
|
||||
|
||||
def get_best_models(directory):
|
||||
best_files = []
|
||||
for file in os.listdir(directory):
|
||||
parts = file.split("_")
|
||||
try:
|
||||
r = float(parts[1])
|
||||
best_files.append((r, file))
|
||||
except Exception:
|
||||
continue
|
||||
return best_files
|
||||
|
||||
def save_checkpoint(model, epoch, reward, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
||||
last_path = os.path.join(last_dir, last_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"reward": reward,
|
||||
"model_state_dict": model.state_dict()
|
||||
}, last_path)
|
||||
maintain_checkpoint_directory(last_dir, max_files=10)
|
||||
best_models = get_best_models(best_dir)
|
||||
add_to_best = False
|
||||
if len(best_models) < 10:
|
||||
add_to_best = True
|
||||
else:
|
||||
min_reward, min_file = min(best_models, key=lambda x: x[0])
|
||||
if reward > min_reward:
|
||||
add_to_best = True
|
||||
os.remove(os.path.join(best_dir, min_file))
|
||||
if add_to_best:
|
||||
best_filename = f"best_{reward:.4f}_epoch_{epoch}_{timestamp}.pt"
|
||||
best_path = os.path.join(best_dir, best_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"reward": reward,
|
||||
"model_state_dict": model.state_dict()
|
||||
}, best_path)
|
||||
maintain_checkpoint_directory(best_dir, max_files=10)
|
||||
print(f"Saved checkpoint for epoch {epoch} with reward {reward:.4f}")
|
||||
|
||||
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||
best_models = get_best_models(best_dir)
|
||||
if not best_models:
|
||||
return None
|
||||
best_reward, best_file = max(best_models, key=lambda x: x[0])
|
||||
path = os.path.join(best_dir, best_file)
|
||||
print(f"Loading best model from checkpoint: {best_file} with reward {best_reward:.4f}")
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
return checkpoint
|
||||
|
||||
# --- Backtest Environment ---
|
||||
class BacktestEnvironment:
|
||||
def __init__(self, candles_dict, base_tf, timeframes):
|
||||
self.candles_dict = candles_dict
|
||||
self.candles_dict = candles_dict # dict of timeframe: candles_list
|
||||
self.base_tf = base_tf
|
||||
self.timeframes = timeframes
|
||||
self.current_index = 0 # Initialize step pointer
|
||||
self.current_index = 0
|
||||
self.trade_history = []
|
||||
self.position = None
|
||||
|
||||
def reset(self):
|
||||
self.current_index = 0
|
||||
self.position = None
|
||||
self.trade_history = []
|
||||
return self.get_state(self.current_index)
|
||||
|
||||
def get_state(self, index):
|
||||
"""Returns state as an array of shape [num_channels, FEATURES_PER_CHANNEL]."""
|
||||
state_features = []
|
||||
base_ts = self.candles_dict[self.base_tf][index]["timestamp"]
|
||||
|
||||
# Timeframe channels
|
||||
for tf in self.timeframes:
|
||||
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
||||
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
||||
state_features.append(features)
|
||||
|
||||
# Indicator channels (placeholder - implement your indicators)
|
||||
for _ in range(NUM_INDICATORS):
|
||||
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
||||
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
"""
|
||||
Advance the environment by one step.
|
||||
Since this is for backtesting, action isn't used here.
|
||||
Returns: current candle info, reward, next state, done, actual high, actual low.
|
||||
"""
|
||||
# Dummy implementation: you would generate targets based on your backtest logic.
|
||||
done = (self.current_index >= len(self.candles_dict[self.base_tf]) - 2)
|
||||
current_candle = self.candles_dict[self.base_tf][self.current_index]
|
||||
# For example, take the next candle's high/low as targets
|
||||
next_candle = self.candles_dict[self.base_tf][self.current_index + 1]
|
||||
actual_high = next_candle["high"]
|
||||
actual_low = next_candle["low"]
|
||||
self.current_index += 1
|
||||
next_state = self.get_state(self.current_index)
|
||||
return current_candle, 0.0, next_state, done, actual_high, actual_low
|
||||
base_candles = self.candles_dict[self.base_tf]
|
||||
if self.current_index >= len(base_candles) - 1:
|
||||
return self.get_state(self.current_index), 0.0, None, True
|
||||
current_state = self.get_state(self.current_index)
|
||||
next_index = self.current_index + 1
|
||||
next_state = self.get_state(next_index)
|
||||
current_candle = base_candles[self.current_index]
|
||||
next_candle = base_candles[next_index]
|
||||
reward = 0.0
|
||||
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||
if self.position is None:
|
||||
if action == 2: # BUY signal
|
||||
entry_price = next_candle["open"]
|
||||
self.position = {"entry_price": entry_price, "entry_index": self.current_index}
|
||||
else:
|
||||
if action == 0: # SELL signal
|
||||
exit_price = next_candle["open"]
|
||||
reward = exit_price - self.position["entry_price"]
|
||||
trade = {
|
||||
"entry_index": self.position["entry_index"],
|
||||
"entry_price": self.position["entry_price"],
|
||||
"exit_index": next_index,
|
||||
"exit_price": exit_price,
|
||||
"pnl": reward
|
||||
}
|
||||
self.trade_history.append(trade)
|
||||
self.position = None
|
||||
self.current_index = next_index
|
||||
done = (self.current_index >= len(base_candles) - 1)
|
||||
return current_state, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
return len(self.candles_dict[self.base_tf])
|
||||
@ -167,99 +272,126 @@ class BacktestEnvironment:
|
||||
def train_on_historical_data(env, model, device, args):
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
|
||||
|
||||
for epoch in range(args.epochs):
|
||||
state = env.reset()
|
||||
total_loss = 0
|
||||
model.train()
|
||||
|
||||
while True:
|
||||
# Prepare batch (here batch size is 1 for simplicity)
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
||||
|
||||
# Forward pass
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
|
||||
# Get target values from next candle (dummy targets from environment)
|
||||
_, _, next_state, done, actual_high, actual_low = env.step(None) # Dummy action
|
||||
# Here we use dummy targets extracted from the next candle's high/low
|
||||
_, _, next_state, done, actual_high, actual_low = env.step(None)
|
||||
target_high = torch.FloatTensor([actual_high]).to(device)
|
||||
target_low = torch.FloatTensor([actual_low]).to(device)
|
||||
|
||||
# Custom loss: use absolute error scaled by 2
|
||||
high_loss = torch.abs(pred_high - target_high) * 2
|
||||
low_loss = torch.abs(pred_low - target_low) * 2
|
||||
loss = (high_loss + low_loss).mean()
|
||||
|
||||
# Backpropagation
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if done:
|
||||
break
|
||||
state = next_state
|
||||
|
||||
scheduler.step()
|
||||
print(f"Epoch {epoch+1} Loss: {total_loss/len(env):.4f}")
|
||||
save_checkpoint(model, epoch, total_loss)
|
||||
|
||||
# --- Mode Handling and Argument Parsing ---
|
||||
# --- Live Plotting Functions ---
|
||||
def update_live_chart(ax, candles, trade_history):
|
||||
ax.clear()
|
||||
close_prices = [candle["close"] for candle in candles]
|
||||
x = list(range(len(close_prices)))
|
||||
ax.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
|
||||
buy_label_added = False
|
||||
sell_label_added = False
|
||||
for trade in trade_history:
|
||||
in_idx = trade["entry_index"]
|
||||
out_idx = trade["exit_index"]
|
||||
in_price = trade["entry_price"]
|
||||
out_price = trade["exit_price"]
|
||||
if not buy_label_added:
|
||||
ax.plot(in_idx, in_price, marker="^", color="green", markersize=10, label="BUY")
|
||||
buy_label_added = True
|
||||
else:
|
||||
ax.plot(in_idx, in_price, marker="^", color="green", markersize=10)
|
||||
if not sell_label_added:
|
||||
ax.plot(out_idx, out_price, marker="v", color="red", markersize=10, label="SELL")
|
||||
sell_label_added = True
|
||||
else:
|
||||
ax.plot(out_idx, out_price, marker="v", color="red", markersize=10)
|
||||
ax.plot([in_idx, out_idx], [in_price, out_price], linestyle="dotted", color="blue")
|
||||
ax.set_title("Live Trading Chart")
|
||||
ax.set_xlabel("Candle Index")
|
||||
ax.set_ylabel("Price")
|
||||
ax.legend()
|
||||
ax.grid(True)
|
||||
|
||||
def live_preview_loop(candles, env):
|
||||
plt.ion()
|
||||
fig, ax = plt.subplots(figsize=(12, 6))
|
||||
while True:
|
||||
update_live_chart(ax, candles, env.trade_history)
|
||||
plt.draw()
|
||||
plt.pause(1) # Update every second
|
||||
|
||||
# --- Argument Parsing ---
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train')
|
||||
parser.add_argument('--mode', choices=['train','live','inference'], default='train')
|
||||
parser.add_argument('--epochs', type=int, default=100)
|
||||
parser.add_argument('--lr', type=float, default=3e-4)
|
||||
parser.add_argument('--threshold', type=float, default=0.005)
|
||||
return parser.parse_args()
|
||||
|
||||
def load_best_checkpoint(model, best_dir="models/best"):
|
||||
# Dummy implementation for loading the best checkpoint.
|
||||
# In real usage, check your saved checkpoints.
|
||||
print("Loading best checkpoint (dummy implementation)")
|
||||
# torch.load(...) can be invoked here.
|
||||
return
|
||||
|
||||
def save_checkpoint(model, epoch, reward, last_dir="models/last", best_dir="models/best"):
|
||||
# Dummy implementation for saving checkpoints.
|
||||
print(f"Saving checkpoint for epoch {epoch}, reward: {reward:.4f}")
|
||||
def random_action():
|
||||
return random.randint(0, 2)
|
||||
|
||||
# --- Main Function ---
|
||||
async def main():
|
||||
args = parse_args()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Initialize model
|
||||
model = TradingModel(
|
||||
num_channels=NUM_TIMEFRAMES + NUM_INDICATORS,
|
||||
num_timeframes=NUM_TIMEFRAMES
|
||||
).to(device)
|
||||
# Define timeframes; these must match your data and expected state dimensions.
|
||||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||
input_dim = len(timeframes) * 7 # 7 features per timeframe.
|
||||
hidden_dim = 128
|
||||
output_dim = 3 # Actions: SELL, HOLD, BUY.
|
||||
# For the Transformer model, we set number of channels = NUM_TIMEFRAMES + NUM_INDICATORS.
|
||||
model = TradingModel(NUM_TIMEFRAMES + NUM_INDICATORS, NUM_TIMEFRAMES).to(device)
|
||||
|
||||
if args.mode == 'train':
|
||||
# Load historical candle data for backtesting
|
||||
candles_dict = load_candles_cache("candles_cache.json")
|
||||
candles_dict = load_candles_cache(CACHE_FILE)
|
||||
if not candles_dict:
|
||||
print("No historical candle data available for backtesting.")
|
||||
return
|
||||
base_tf = "1m" # Base timeframe
|
||||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||
base_tf = "1m"
|
||||
env = BacktestEnvironment(candles_dict, base_tf, timeframes)
|
||||
train_on_historical_data(env, model, device, args)
|
||||
elif args.mode == 'live':
|
||||
# Load model and connect to live data
|
||||
load_best_checkpoint(model)
|
||||
candles_dict = load_candles_cache(CACHE_FILE)
|
||||
if not candles_dict:
|
||||
print("No cached candles available for live preview.")
|
||||
return
|
||||
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes)
|
||||
# Start the live preview in a separate daemon thread.
|
||||
preview_thread = threading.Thread(target=live_preview_loop, args=(candles_dict["1m"], env), daemon=True)
|
||||
preview_thread.start()
|
||||
print("Starting live trading loop. (Using random actions for simulation.)")
|
||||
while True:
|
||||
# Process live data: fetch live candles, make predictions, execute trades
|
||||
print("Processing live data...")
|
||||
await asyncio.sleep(1)
|
||||
state, reward, next_state, done = env.step(random_action())
|
||||
if done:
|
||||
print("Reached end of simulated data, resetting environment.")
|
||||
state = env.reset(clear_trade_history=False)
|
||||
await asyncio.sleep(1) # Simulate one candle per second.
|
||||
elif args.mode == 'inference':
|
||||
# Load model and run inference
|
||||
load_best_checkpoint(model)
|
||||
print("Running inference...")
|
||||
# Add your inference logic here
|
||||
# Implement your inference loop here.
|
||||
else:
|
||||
print("Invalid mode specified.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Loading…
x
Reference in New Issue
Block a user