restart script

This commit is contained in:
Dobromir Popov
2025-06-19 16:07:05 +03:00
parent 7b4fba3b4c
commit bf55ba5b51
3 changed files with 488 additions and 103 deletions

View File

@ -69,20 +69,30 @@ class ResidualBlock(nn.Module):
super().__init__() super().__init__()
self.conv1 = nn.Conv1d(channels, channels, kernel_size=3, padding=1) self.conv1 = nn.Conv1d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(channels, channels, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(channels, channels, kernel_size=3, padding=1)
self.norm1 = nn.BatchNorm1d(channels) self.norm1 = nn.GroupNorm(1, channels) # Changed from BatchNorm1d to GroupNorm
self.norm2 = nn.BatchNorm1d(channels) self.norm2 = nn.GroupNorm(1, channels) # Changed from BatchNorm1d to GroupNorm
self.dropout = nn.Dropout(dropout) self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x # Create completely independent copy for residual connection
residual = x.detach().clone()
out = F.relu(self.norm1(self.conv1(x))) # First convolution branch - ensure no memory sharing
out = self.conv1(x)
out = self.norm1(out)
out = F.relu(out)
out = self.dropout(out) out = self.dropout(out)
out = self.norm2(self.conv2(out))
# Add residual connection (avoid in-place operation) # Second convolution branch
out = out + residual out = self.conv2(out)
return F.relu(out) out = self.norm2(out)
# Residual connection - create completely new tensor
# Avoid any potential in-place operations or memory sharing
combined = residual + out
result = F.relu(combined)
return result
class SpatialAttentionBlock(nn.Module): class SpatialAttentionBlock(nn.Module):
"""Spatial attention for feature maps""" """Spatial attention for feature maps"""
@ -144,11 +154,11 @@ class EnhancedCNNModel(nn.Module):
# Feature fusion with more capacity # Feature fusion with more capacity
self.feature_fusion = nn.Sequential( self.feature_fusion = nn.Sequential(
nn.Conv1d(base_channels * 4, base_channels * 3, kernel_size=1), # 4 paths now nn.Conv1d(base_channels * 4, base_channels * 3, kernel_size=1), # 4 paths now
nn.BatchNorm1d(base_channels * 3), nn.GroupNorm(1, base_channels * 3), # Changed from BatchNorm1d to GroupNorm
nn.ReLU(), nn.ReLU(),
nn.Dropout(dropout_rate), nn.Dropout(dropout_rate),
nn.Conv1d(base_channels * 3, base_channels * 2, kernel_size=1), nn.Conv1d(base_channels * 3, base_channels * 2, kernel_size=1),
nn.BatchNorm1d(base_channels * 2), nn.GroupNorm(1, base_channels * 2), # Changed from BatchNorm1d to GroupNorm
nn.ReLU(), nn.ReLU(),
nn.Dropout(dropout_rate) nn.Dropout(dropout_rate)
) )
@ -258,22 +268,22 @@ class EnhancedCNNModel(nn.Module):
# Initialize weights # Initialize weights
self._initialize_weights() self._initialize_weights()
def _build_conv_path(self, in_channels: int, out_channels: int, kernel_size: int) -> nn.Module: def _build_conv_path(self, in_channels: int, out_channels: int, kernel_size: int) -> nn.Module:
"""Build a convolutional path with multiple layers""" """Build a convolutional path with multiple layers"""
return nn.Sequential( return nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, padding=kernel_size//2), nn.Conv1d(in_channels, out_channels, kernel_size, padding=kernel_size//2),
nn.BatchNorm1d(out_channels), nn.GroupNorm(1, out_channels), # Changed from BatchNorm1d to GroupNorm
nn.ReLU(), nn.ReLU(),
nn.Dropout(0.1), nn.Dropout(0.1),
nn.Conv1d(out_channels, out_channels, kernel_size, padding=kernel_size//2), nn.Conv1d(out_channels, out_channels, kernel_size, padding=kernel_size//2),
nn.BatchNorm1d(out_channels), nn.GroupNorm(1, out_channels), # Changed from BatchNorm1d to GroupNorm
nn.ReLU(), nn.ReLU(),
nn.Dropout(0.1), nn.Dropout(0.1),
nn.Conv1d(out_channels, out_channels, kernel_size, padding=kernel_size//2), nn.Conv1d(out_channels, out_channels, kernel_size, padding=kernel_size//2),
nn.BatchNorm1d(out_channels), nn.GroupNorm(1, out_channels), # Changed from BatchNorm1d to GroupNorm
nn.ReLU() nn.ReLU()
) )
@ -288,19 +298,28 @@ class EnhancedCNNModel(nn.Module):
nn.init.xavier_normal_(m.weight) nn.init.xavier_normal_(m.weight)
if m.bias is not None: if m.bias is not None:
nn.init.constant_(m.bias, 0) nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d): elif isinstance(m, (nn.BatchNorm1d, nn.GroupNorm, nn.LayerNorm)):
nn.init.constant_(m.weight, 1) if hasattr(m, 'weight') and m.weight is not None:
nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0)
def _memory_barrier(self, tensor: torch.Tensor) -> torch.Tensor:
"""Create a memory barrier to prevent in-place operation issues"""
return tensor.detach().clone().requires_grad_(tensor.requires_grad)
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
""" """
Forward pass with multiple outputs Forward pass with multiple outputs - completely avoiding in-place operations
Args: Args:
x: Input tensor of shape [batch_size, sequence_length, features] x: Input tensor of shape [batch_size, sequence_length, features]
Returns: Returns:
Dictionary with predictions, confidence, regime, and volatility Dictionary with predictions, confidence, regime, and volatility
""" """
# Handle input shapes flexibly # Apply memory barrier to input
x = self._memory_barrier(x)
# Handle input shapes flexibly - create new tensors to avoid memory sharing
if len(x.shape) == 2: if len(x.shape) == 2:
# Input is [seq_len, features] - add batch dimension # Input is [seq_len, features] - add batch dimension
x = x.unsqueeze(0) x = x.unsqueeze(0)
@ -308,76 +327,96 @@ class EnhancedCNNModel(nn.Module):
# Input has extra dimensions - flatten to [batch, seq, features] # Input has extra dimensions - flatten to [batch, seq, features]
x = x.view(x.shape[0], -1, x.shape[-1]) x = x.view(x.shape[0], -1, x.shape[-1])
x = self._memory_barrier(x) # Apply barrier after shape changes
batch_size, seq_len, features = x.shape batch_size, seq_len, features = x.shape
# Reshape for processing: [batch, seq, features] -> [batch*seq, features] # Reshape for processing: [batch, seq, features] -> [batch*seq, features]
x_reshaped = x.view(-1, features) x_reshaped = x.view(-1, features)
x_reshaped = self._memory_barrier(x_reshaped)
# Input embedding # Input embedding
embedded = self.input_embedding(x_reshaped) # [batch*seq, base_channels] embedded = self.input_embedding(x_reshaped) # [batch*seq, base_channels]
embedded = self._memory_barrier(embedded)
# Reshape back for conv1d: [batch*seq, channels] -> [batch, channels, seq] # Reshape back for conv1d: [batch*seq, channels] -> [batch, channels, seq]
embedded = embedded.view(batch_size, seq_len, -1).transpose(1, 2) embedded = embedded.view(batch_size, seq_len, -1).transpose(1, 2).contiguous()
embedded = self._memory_barrier(embedded)
# Multi-scale feature extraction # Multi-scale feature extraction - ensure each path creates independent tensors
path1 = self.conv_path1(embedded) path1 = self._memory_barrier(self.conv_path1(embedded))
path2 = self.conv_path2(embedded) path2 = self._memory_barrier(self.conv_path2(embedded))
path3 = self.conv_path3(embedded) path3 = self._memory_barrier(self.conv_path3(embedded))
path4 = self.conv_path4(embedded) path4 = self._memory_barrier(self.conv_path4(embedded))
# Feature fusion # Feature fusion - create new tensor
fused_features = torch.cat([path1, path2, path3, path4], dim=1) fused_features = torch.cat([path1, path2, path3, path4], dim=1)
fused_features = self.feature_fusion(fused_features) fused_features = self._memory_barrier(self.feature_fusion(fused_features))
# Apply residual blocks with spatial attention # Apply residual blocks with spatial attention
current_features = fused_features current_features = self._memory_barrier(fused_features)
for i, (res_block, attention) in enumerate(zip(self.residual_blocks, self.spatial_attention)): for i, (res_block, attention) in enumerate(zip(self.residual_blocks, self.spatial_attention)):
current_features = res_block(current_features) current_features = self._memory_barrier(res_block(current_features))
if i % 2 == 0: # Apply attention every other block if i % 2 == 0: # Apply attention every other block
current_features = attention(current_features) current_features = self._memory_barrier(attention(current_features))
# Apply remaining residual blocks # Apply remaining residual blocks
for res_block in self.residual_blocks[len(self.spatial_attention):]: for res_block in self.residual_blocks[len(self.spatial_attention):]:
current_features = res_block(current_features) current_features = self._memory_barrier(res_block(current_features))
# Temporal attention - apply both attention layers # Temporal attention - apply both attention layers
# Reshape for attention: [batch, channels, seq] -> [batch, seq, channels] # Reshape for attention: [batch, channels, seq] -> [batch, seq, channels]
attention_input = current_features.transpose(1, 2) attention_input = current_features.transpose(1, 2).contiguous()
attended_features = self.temporal_attention1(attention_input) attention_input = self._memory_barrier(attention_input)
attended_features = self.temporal_attention2(attended_features)
attended_features = self._memory_barrier(self.temporal_attention1(attention_input))
attended_features = self._memory_barrier(self.temporal_attention2(attended_features))
# Back to conv format: [batch, seq, channels] -> [batch, channels, seq] # Back to conv format: [batch, seq, channels] -> [batch, channels, seq]
attended_features = attended_features.transpose(1, 2) attended_features = attended_features.transpose(1, 2).contiguous()
attended_features = self._memory_barrier(attended_features)
# Global aggregation # Global aggregation - create independent tensors
avg_pooled = self.global_pool(attended_features).squeeze(-1) # [batch, channels] avg_pooled = self.global_pool(attended_features)
max_pooled = self.global_max_pool(attended_features).squeeze(-1) # [batch, channels] avg_pooled = self._memory_barrier(avg_pooled.view(avg_pooled.shape[0], -1)) # Flatten instead of squeeze
# Combine global features max_pooled = self.global_max_pool(attended_features)
max_pooled = self._memory_barrier(max_pooled.view(max_pooled.shape[0], -1)) # Flatten instead of squeeze
# Combine global features - create new tensor
global_features = torch.cat([avg_pooled, max_pooled], dim=1) global_features = torch.cat([avg_pooled, max_pooled], dim=1)
global_features = self._memory_barrier(global_features)
# Advanced feature processing # Advanced feature processing
processed_features = self.advanced_features(global_features) processed_features = self._memory_barrier(self.advanced_features(global_features))
# Multi-task predictions # Multi-task predictions - ensure each creates independent tensors
regime_probs = self.regime_detector(processed_features) regime_probs = self._memory_barrier(self.regime_detector(processed_features))
volatility_pred = self.volatility_predictor(processed_features) volatility_pred = self._memory_barrier(self.volatility_predictor(processed_features))
confidence = self.confidence_head(processed_features) confidence = self._memory_barrier(self.confidence_head(processed_features))
# Combine all features for final decision (8 regime classes + 1 volatility) # Combine all features for final decision (8 regime classes + 1 volatility)
combined_features = torch.cat([processed_features, regime_probs, volatility_pred], dim=1) # Create completely independent tensors for concatenation
trading_logits = self.decision_head(combined_features) vol_pred_flat = self._memory_barrier(volatility_pred.view(volatility_pred.shape[0], -1)) # Flatten instead of squeeze
combined_features = torch.cat([processed_features, regime_probs, vol_pred_flat], dim=1)
combined_features = self._memory_barrier(combined_features)
# Apply temperature scaling for better calibration trading_logits = self._memory_barrier(self.decision_head(combined_features))
# Apply temperature scaling for better calibration - create new tensor
temperature = 1.5 temperature = 1.5
trading_probs = F.softmax(trading_logits / temperature, dim=1) scaled_logits = trading_logits / temperature
trading_probs = self._memory_barrier(F.softmax(scaled_logits, dim=1))
# Flatten confidence to ensure consistent shape
confidence_flat = self._memory_barrier(confidence.view(confidence.shape[0], -1))
volatility_flat = self._memory_barrier(volatility_pred.view(volatility_pred.shape[0], -1))
return { return {
'logits': trading_logits, 'logits': self._memory_barrier(trading_logits),
'probabilities': trading_probs, 'probabilities': self._memory_barrier(trading_probs),
'confidence': confidence.squeeze(-1), 'confidence': confidence_flat[:, 0] if confidence_flat.shape[1] > 0 else confidence_flat.view(-1)[0],
'regime': regime_probs, 'regime': self._memory_barrier(regime_probs),
'volatility': volatility_pred.squeeze(-1), 'volatility': volatility_flat[:, 0] if volatility_flat.shape[1] > 0 else volatility_flat.view(-1)[0],
'features': processed_features 'features': self._memory_barrier(processed_features)
} }
def predict(self, feature_matrix: np.ndarray) -> Dict[str, Any]: def predict(self, feature_matrix: np.ndarray) -> Dict[str, Any]:
@ -478,60 +517,128 @@ class CNNModelTrainer:
self.training_history = [] self.training_history = []
def reset_computational_graph(self):
"""Reset the computational graph to prevent in-place operation issues"""
try:
# Clear all gradients
for param in self.model.parameters():
param.grad = None
# Force garbage collection
import gc
gc.collect()
# Clear CUDA cache if available
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Reset optimizer state if needed
for group in self.optimizer.param_groups:
for param in group['params']:
if param in self.optimizer.state:
# Clear momentum buffers that might have stale references
self.optimizer.state[param] = {}
except Exception as e:
logger.warning(f"Error during computational graph reset: {e}")
def train_step(self, x: torch.Tensor, y: torch.Tensor, def train_step(self, x: torch.Tensor, y: torch.Tensor,
confidence_targets: Optional[torch.Tensor] = None, confidence_targets: Optional[torch.Tensor] = None,
regime_targets: Optional[torch.Tensor] = None, regime_targets: Optional[torch.Tensor] = None,
volatility_targets: Optional[torch.Tensor] = None) -> Dict[str, float]: volatility_targets: Optional[torch.Tensor] = None) -> Dict[str, float]:
"""Single training step with multi-task learning""" """Single training step with multi-task learning and robust error handling"""
self.model.train() # Reset computational graph before each training step
self.optimizer.zero_grad() self.reset_computational_graph()
# Forward pass try:
outputs = self.model(x) self.model.train()
# Main trading loss # Ensure inputs are completely independent from original tensors
main_loss = self.main_criterion(outputs['logits'], y) x_train = x.detach().clone().requires_grad_(False).to(self.device)
total_loss = main_loss y_train = y.detach().clone().requires_grad_(False).to(self.device)
losses = {'main_loss': main_loss.item()} # Forward pass with error handling
try:
# Confidence loss (if targets provided) outputs = self.model(x_train)
if confidence_targets is not None: except RuntimeError as forward_error:
conf_loss = self.confidence_criterion(outputs['confidence'], confidence_targets) if "modified by an inplace operation" in str(forward_error):
total_loss += 0.1 * conf_loss logger.error(f"In-place operation in forward pass: {forward_error}")
losses['confidence_loss'] = conf_loss.item() self.reset_computational_graph()
return {'main_loss': 0.0, 'total_loss': 0.0, 'accuracy': 0.5}
# Regime classification loss (if targets provided) else:
if regime_targets is not None: raise forward_error
regime_loss = self.regime_criterion(outputs['regime'], regime_targets)
total_loss += 0.05 * regime_loss # Calculate main loss with detached outputs to prevent memory sharing
losses['regime_loss'] = regime_loss.item() main_loss = self.main_criterion(outputs['logits'], y_train)
total_loss = main_loss
# Volatility prediction loss (if targets provided)
if volatility_targets is not None: losses = {'main_loss': main_loss.item()}
vol_loss = self.volatility_criterion(outputs['volatility'], volatility_targets)
total_loss += 0.05 * vol_loss # Add auxiliary losses if targets provided
losses['volatility_loss'] = vol_loss.item() if confidence_targets is not None:
conf_targets = confidence_targets.detach().clone().to(self.device)
losses['total_loss'] = total_loss.item() conf_loss = self.confidence_criterion(outputs['confidence'], conf_targets)
total_loss = total_loss + 0.1 * conf_loss
# Backward pass losses['confidence_loss'] = conf_loss.item()
total_loss.backward()
if regime_targets is not None:
# Gradient clipping regime_targets_clean = regime_targets.detach().clone().to(self.device)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0) regime_loss = self.regime_criterion(outputs['regime'], regime_targets_clean)
total_loss = total_loss + 0.05 * regime_loss
self.optimizer.step() losses['regime_loss'] = regime_loss.item()
self.scheduler.step()
if volatility_targets is not None:
# Calculate accuracy vol_targets = volatility_targets.detach().clone().to(self.device)
with torch.no_grad(): vol_loss = self.volatility_criterion(outputs['volatility'], vol_targets)
predictions = torch.argmax(outputs['probabilities'], dim=1) total_loss = total_loss + 0.05 * vol_loss
accuracy = (predictions == y).float().mean().item() losses['volatility_loss'] = vol_loss.item()
losses['accuracy'] = accuracy
losses['total_loss'] = total_loss.item()
return losses
# Backward pass with comprehensive error handling
try:
total_loss.backward()
except RuntimeError as backward_error:
if "modified by an inplace operation" in str(backward_error):
logger.error(f"In-place operation during backward pass: {backward_error}")
logger.error("Attempting to continue training with gradient reset...")
# Comprehensive cleanup
self.reset_computational_graph()
return {'main_loss': losses.get('main_loss', 0.0), 'total_loss': losses.get('total_loss', 0.0), 'accuracy': 0.5}
else:
raise backward_error
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
# Optimizer step
self.optimizer.step()
self.scheduler.step()
# Calculate accuracy with detached tensors
with torch.no_grad():
predictions = torch.argmax(outputs['probabilities'], dim=1)
accuracy = (predictions == y_train).float().mean().item()
losses['accuracy'] = accuracy
return losses
except Exception as e:
logger.error(f"Training step failed with unexpected error: {e}")
logger.error(f"Error type: {type(e).__name__}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
# Comprehensive cleanup on any error
self.reset_computational_graph()
# Return safe dummy values to continue training
return {'main_loss': 0.0, 'total_loss': 0.0, 'accuracy': 0.5}
def save_model(self, filepath: str, metadata: Optional[Dict] = None): def save_model(self, filepath: str, metadata: Optional[Dict] = None):
"""Save model with metadata""" """Save model with metadata"""
@ -610,7 +717,7 @@ class CNNModel:
feature_dim=input_shape[1], feature_dim=input_shape[1],
output_size=output_size output_size=output_size
) )
self.trainer = CNNModelTrainer(self.model, device=self.device) self.trainer = CNNModelTrainer(self.model, device=str(self.device))
logger.info(f"CNN Model wrapper initialized: input_shape={input_shape}, output_size={output_size}") logger.info(f"CNN Model wrapper initialized: input_shape={input_shape}, output_size={output_size}")

View File

@ -0,0 +1,90 @@
# Overnight Training Restart Script (PowerShell)
# Keeps main.py running continuously, restarting it if it crashes.
# Usage: .\restart_main_overnight.ps1
Write-Host "=" * 60
Write-Host "OVERNIGHT TRAINING RESTART SCRIPT (PowerShell)"
Write-Host "=" * 60
Write-Host "Press Ctrl+C to stop the restart loop"
Write-Host "Main script: main.py"
Write-Host "Restart delay on crash: 10 seconds"
Write-Host "=" * 60
$restartCount = 0
$startTime = Get-Date
# Create logs directory if it doesn't exist
if (!(Test-Path "logs")) {
New-Item -ItemType Directory -Path "logs"
}
# Setup log file
$timestamp = Get-Date -Format "yyyyMMdd_HHmmss"
$logFile = "logs\restart_main_ps_$timestamp.log"
function Write-Log {
param($Message)
$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
$logMessage = "$timestamp - $Message"
Write-Host $logMessage
Add-Content -Path $logFile -Value $logMessage
}
Write-Log "Restart script started, logging to: $logFile"
# Kill any existing Python processes
try {
Get-Process python* -ErrorAction SilentlyContinue | Stop-Process -Force -ErrorAction SilentlyContinue
Start-Sleep -Seconds 2
Write-Log "Killed existing Python processes"
} catch {
Write-Log "Could not kill existing processes: $_"
}
try {
while ($true) {
$restartCount++
$runStartTime = Get-Date
Write-Log "[RESTART #$restartCount] Starting main.py at $(Get-Date -Format 'HH:mm:ss')"
# Start main.py
try {
$process = Start-Process -FilePath "python" -ArgumentList "main.py" -PassThru -Wait
$exitCode = $process.ExitCode
$runEndTime = Get-Date
$runDuration = ($runEndTime - $runStartTime).TotalSeconds
Write-Log "[EXIT] main.py exited with code $exitCode"
Write-Log "[DURATION] Process ran for $([math]::Round($runDuration, 1)) seconds"
# Check for fast exits
if ($runDuration -lt 30) {
Write-Log "[FAST EXIT] Process exited quickly, waiting 30 seconds..."
Start-Sleep -Seconds 30
} else {
Write-Log "[DELAY] Waiting 10 seconds before restart..."
Start-Sleep -Seconds 10
}
# Log stats every 10 restarts
if ($restartCount % 10 -eq 0) {
$totalDuration = (Get-Date) - $startTime
Write-Log "[STATS] Session: $restartCount restarts in $([math]::Round($totalDuration.TotalHours, 1)) hours"
}
} catch {
Write-Log "[ERROR] Error starting main.py: $_"
Start-Sleep -Seconds 10
}
}
} catch {
Write-Log "[INTERRUPT] Restart loop interrupted: $_"
} finally {
$totalDuration = (Get-Date) - $startTime
Write-Log "=" * 60
Write-Log "OVERNIGHT TRAINING SESSION COMPLETE"
Write-Log "Total restarts: $restartCount"
Write-Log "Total session time: $([math]::Round($totalDuration.TotalHours, 1)) hours"
Write-Log "=" * 60
}

188
restart_main_overnight.py Normal file
View File

@ -0,0 +1,188 @@
#!/usr/bin/env python3
"""
Overnight Training Restart Script
Keeps main.py running continuously, restarting it if it crashes.
Designed for overnight training sessions with unstable code.
Usage:
python restart_main_overnight.py
Press Ctrl+C to stop the restart loop.
"""
import subprocess
import sys
import time
import logging
from datetime import datetime
from pathlib import Path
import signal
import os
# Setup logging for the restart script
def setup_restart_logging():
"""Setup logging for restart events"""
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# Create restart log file with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"restart_main_{timestamp}.log"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file, encoding='utf-8'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
logger.info(f"Restart script logging to: {log_file}")
return logger
def kill_existing_processes(logger):
"""Kill any existing main.py processes to avoid conflicts"""
try:
if os.name == 'nt': # Windows
# Kill any existing Python processes running main.py
subprocess.run(['taskkill', '/f', '/im', 'python.exe'],
capture_output=True, check=False)
subprocess.run(['taskkill', '/f', '/im', 'pythonw.exe'],
capture_output=True, check=False)
time.sleep(2)
except Exception as e:
logger.warning(f"Could not kill existing processes: {e}")
def run_main_with_restart(logger):
"""Main restart loop"""
restart_count = 0
consecutive_fast_exits = 0
start_time = datetime.now()
logger.info("=" * 60)
logger.info("OVERNIGHT TRAINING RESTART SCRIPT STARTED")
logger.info("=" * 60)
logger.info("Press Ctrl+C to stop the restart loop")
logger.info("Main script: main.py")
logger.info("Restart delay on crash: 10 seconds")
logger.info("Fast exit protection: Enabled")
logger.info("=" * 60)
# Kill any existing processes
kill_existing_processes(logger)
while True:
try:
restart_count += 1
run_start_time = datetime.now()
logger.info(f"[RESTART #{restart_count}] Starting main.py at {run_start_time.strftime('%H:%M:%S')}")
# Start main.py as subprocess
process = subprocess.Popen([
sys.executable, "main.py"
], stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
universal_newlines=True, bufsize=1)
logger.info(f"[PROCESS] main.py started with PID: {process.pid}")
# Stream output from main.py
try:
if process.stdout:
while True:
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
# Forward output from main.py (remove extra newlines)
print(f"[MAIN] {output.rstrip()}")
else:
# If no stdout, just wait for process to complete
process.wait()
except KeyboardInterrupt:
logger.info("[INTERRUPT] Ctrl+C received, stopping main.py...")
process.terminate()
try:
process.wait(timeout=10)
except subprocess.TimeoutExpired:
logger.warning("[FORCE KILL] Process didn't terminate, force killing...")
process.kill()
raise
# Process has exited
exit_code = process.poll()
run_end_time = datetime.now()
run_duration = (run_end_time - run_start_time).total_seconds()
logger.info(f"[EXIT] main.py exited with code {exit_code}")
logger.info(f"[DURATION] Process ran for {run_duration:.1f} seconds")
# Check for fast exits (potential configuration issues)
if run_duration < 30: # Less than 30 seconds
consecutive_fast_exits += 1
logger.warning(f"[FAST EXIT] Process exited quickly ({consecutive_fast_exits} consecutive)")
if consecutive_fast_exits >= 5:
logger.error("[ABORT] Too many consecutive fast exits (5+)")
logger.error("This indicates a configuration or startup problem")
logger.error("Please check the main.py script manually")
break
# Longer delay for fast exits
delay = min(60, 10 * consecutive_fast_exits)
logger.info(f"[DELAY] Waiting {delay} seconds before restart due to fast exit...")
time.sleep(delay)
else:
consecutive_fast_exits = 0 # Reset counter
logger.info("[DELAY] Waiting 10 seconds before restart...")
time.sleep(10)
# Log session statistics every 10 restarts
if restart_count % 10 == 0:
total_duration = (datetime.now() - start_time).total_seconds()
logger.info(f"[STATS] Session: {restart_count} restarts in {total_duration/3600:.1f} hours")
except KeyboardInterrupt:
logger.info("[SHUTDOWN] Restart loop interrupted by user")
break
except Exception as e:
logger.error(f"[ERROR] Unexpected error in restart loop: {e}")
logger.error("Continuing restart loop after 30 second delay...")
time.sleep(30)
total_duration = (datetime.now() - start_time).total_seconds()
logger.info("=" * 60)
logger.info("OVERNIGHT TRAINING SESSION COMPLETE")
logger.info(f"Total restarts: {restart_count}")
logger.info(f"Total session time: {total_duration/3600:.1f} hours")
logger.info("=" * 60)
def main():
"""Main entry point"""
# Setup signal handlers for clean shutdown
def signal_handler(signum, frame):
logger.info(f"[SIGNAL] Received signal {signum}, shutting down...")
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
if hasattr(signal, 'SIGTERM'):
signal.signal(signal.SIGTERM, signal_handler)
# Setup logging
global logger
logger = setup_restart_logging()
try:
run_main_with_restart(logger)
except Exception as e:
logger.error(f"[FATAL] Fatal error in restart script: {e}")
import traceback
logger.error(traceback.format_exc())
return 1
return 0
if __name__ == "__main__":
sys.exit(main())