remove emojis from console
This commit is contained in:
2
.github/workflows/ci-cd.yml
vendored
2
.github/workflows/ci-cd.yml
vendored
@@ -164,5 +164,5 @@ jobs:
|
||||
- name: Notify on failure
|
||||
if: ${{ needs.build-and-deploy.result == 'failure' || needs.docker-build.result == 'failure' }}
|
||||
run: |
|
||||
echo "❌ Deployment failed!"
|
||||
echo " Deployment failed!"
|
||||
# Add notification logic here (Slack, email, etc.)
|
||||
|
||||
@@ -13,19 +13,19 @@ Comprehensive audit of the multi-modal trading system revealed a **strong, well-
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ COBY System (Standalone) │
|
||||
│ Multi-Exchange Aggregation │ TimescaleDB │ Redis Cache │
|
||||
│ Status: ✅ Fully Operational │
|
||||
│ Status: Fully Operational │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Core DataProvider (core/data_provider.py) │
|
||||
│ Automatic Maintenance │ Williams Pivots │ COB Integration │
|
||||
│ Status: ✅ Implemented, Needs Enhancement │
|
||||
│ Status: Implemented, Needs Enhancement │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ StandardizedDataProvider (core/standardized_data_provider.py) │
|
||||
│ BaseDataInput │ ModelOutputManager │ Unified Interface │
|
||||
│ Status: ✅ Implemented, Needs Heatmap Integration │
|
||||
│ Status: Implemented, Needs Heatmap Integration │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
@@ -35,7 +35,7 @@ Comprehensive audit of the multi-modal trading system revealed a **strong, well-
|
||||
|
||||
## Key Findings
|
||||
|
||||
### ✅ Strengths (Fully Implemented)
|
||||
### Strengths (Fully Implemented)
|
||||
|
||||
1. **COBY System**
|
||||
- Standalone multi-exchange data aggregation
|
||||
@@ -82,7 +82,7 @@ Comprehensive audit of the multi-modal trading system revealed a **strong, well-
|
||||
- Live price fetching with multiple fallbacks
|
||||
- **Status**: Core functionality complete
|
||||
|
||||
### ⚠️ Partial Implementations (Needs Validation)
|
||||
### Partial Implementations (Needs Validation)
|
||||
|
||||
1. **COB Raw Tick Storage**
|
||||
- Structure exists (30 min buffer)
|
||||
@@ -99,7 +99,7 @@ Comprehensive audit of the multi-modal trading system revealed a **strong, well-
|
||||
- No unified interface yet
|
||||
- Needs adapter layer
|
||||
|
||||
### ❌ Areas Needing Enhancement
|
||||
### Areas Needing Enhancement
|
||||
|
||||
1. **COB Data Collection Robustness**
|
||||
- **Issue**: NoneType errors in `_cob_aggregation_worker`
|
||||
@@ -197,23 +197,23 @@ Dashboard / External Consumers
|
||||
## Code Quality Assessment
|
||||
|
||||
### Excellent
|
||||
- ✅ Comprehensive error handling in EnhancedCOBWebSocket
|
||||
- ✅ Thread-safe data access patterns
|
||||
- ✅ Clear separation of concerns across layers
|
||||
- ✅ Extensive logging for debugging
|
||||
- ✅ Proper use of dataclasses for type safety
|
||||
- Comprehensive error handling in EnhancedCOBWebSocket
|
||||
- Thread-safe data access patterns
|
||||
- Clear separation of concerns across layers
|
||||
- Extensive logging for debugging
|
||||
- Proper use of dataclasses for type safety
|
||||
|
||||
### Good
|
||||
- ✅ Automatic data maintenance workers
|
||||
- ✅ Fallback mechanisms for API failures
|
||||
- ✅ Subscriber pattern for data distribution
|
||||
- ✅ Pivot-based normalization system
|
||||
- Automatic data maintenance workers
|
||||
- Fallback mechanisms for API failures
|
||||
- Subscriber pattern for data distribution
|
||||
- Pivot-based normalization system
|
||||
|
||||
### Needs Improvement
|
||||
- ⚠️ Defensive programming in COB aggregation
|
||||
- ⚠️ Configuration management (hardcoded values)
|
||||
- ⚠️ Comprehensive input validation
|
||||
- ⚠️ Data quality monitoring
|
||||
- Defensive programming in COB aggregation
|
||||
- Configuration management (hardcoded values)
|
||||
- Comprehensive input validation
|
||||
- Data quality monitoring
|
||||
|
||||
## Recommendations
|
||||
|
||||
|
||||
@@ -83,7 +83,7 @@ The Data Provider backbone is the foundation of the system, implemented as a mul
|
||||
- `HeatmapData`: Visualization-ready heatmap data
|
||||
- `ConnectionStatus`: Exchange connection monitoring
|
||||
|
||||
**Current Status**: ✅ Fully implemented and operational
|
||||
**Current Status**: Fully implemented and operational
|
||||
|
||||
#### Layer 2: Core DataProvider (Real-Time Trading Operations)
|
||||
|
||||
@@ -130,7 +130,7 @@ The Data Provider backbone is the foundation of the system, implemented as a mul
|
||||
- `DataSubscriber`: Subscriber information
|
||||
- `SimplePivotLevel`: Fallback pivot structure
|
||||
|
||||
**Current Status**: ✅ Fully implemented with ongoing enhancements
|
||||
**Current Status**: Fully implemented with ongoing enhancements
|
||||
|
||||
#### Layer 3: StandardizedDataProvider (Unified Model Interface)
|
||||
|
||||
@@ -181,26 +181,26 @@ The Data Provider backbone is the foundation of the system, implemented as a mul
|
||||
- Data completeness scoring
|
||||
- Validation before model inference
|
||||
|
||||
**Current Status**: ✅ Implemented with enhancements needed for heatmap integration
|
||||
**Current Status**: Implemented with enhancements needed for heatmap integration
|
||||
|
||||
#### Implementation Details
|
||||
|
||||
**Existing Strengths**:
|
||||
- ✅ Robust automatic data maintenance with background workers
|
||||
- ✅ Williams Market Structure with 5-level pivot analysis
|
||||
- ✅ Real-time COB streaming with multiple Binance streams
|
||||
- ✅ Thread-safe data access and subscriber management
|
||||
- ✅ Comprehensive error handling and fallback mechanisms
|
||||
- ✅ Pivot-based normalization for improved model training
|
||||
- ✅ Centralized model output storage for cross-feeding
|
||||
- Robust automatic data maintenance with background workers
|
||||
- Williams Market Structure with 5-level pivot analysis
|
||||
- Real-time COB streaming with multiple Binance streams
|
||||
- Thread-safe data access and subscriber management
|
||||
- Comprehensive error handling and fallback mechanisms
|
||||
- Pivot-based normalization for improved model training
|
||||
- Centralized model output storage for cross-feeding
|
||||
|
||||
**Areas for Enhancement**:
|
||||
- ❌ Unified integration between COBY and core DataProvider
|
||||
- ❌ COB heatmap matrix generation for model inputs
|
||||
- ❌ Configurable price ranges for COB imbalance calculation
|
||||
- ❌ Comprehensive data quality scoring and monitoring
|
||||
- ❌ Missing data interpolation strategies
|
||||
- ❌ Enhanced validation with detailed error reporting
|
||||
- Unified integration between COBY and core DataProvider
|
||||
- COB heatmap matrix generation for model inputs
|
||||
- Configurable price ranges for COB imbalance calculation
|
||||
- Comprehensive data quality scoring and monitoring
|
||||
- Missing data interpolation strategies
|
||||
- Enhanced validation with detailed error reporting
|
||||
|
||||
### Standardized Model Input/Output Format
|
||||
|
||||
|
||||
@@ -23,26 +23,26 @@ The system is designed to adapt to current market conditions through continuous
|
||||
#### Current Implementation Status
|
||||
|
||||
**IMPLEMENTED:**
|
||||
- ✅ Core DataProvider with automatic data maintenance (1500 candles cached per symbol/timeframe)
|
||||
- ✅ Multi-exchange COB integration via EnhancedCOBWebSocket (Binance depth@100ms, ticker, aggTrade streams)
|
||||
- ✅ Williams Market Structure pivot point calculation with monthly data analysis
|
||||
- ✅ Pivot-based normalization system with PivotBounds caching
|
||||
- ✅ Real-time tick aggregation with RealTimeTickAggregator
|
||||
- ✅ COB 1s aggregation with price buckets ($1 for ETH, $10 for BTC)
|
||||
- ✅ Multi-timeframe imbalance calculations (1s, 5s, 15s, 60s MA)
|
||||
- ✅ Centralized data distribution with subscriber management
|
||||
- ✅ COBY standalone system with TimescaleDB storage and Redis caching
|
||||
- Core DataProvider with automatic data maintenance (1500 candles cached per symbol/timeframe)
|
||||
- Multi-exchange COB integration via EnhancedCOBWebSocket (Binance depth@100ms, ticker, aggTrade streams)
|
||||
- Williams Market Structure pivot point calculation with monthly data analysis
|
||||
- Pivot-based normalization system with PivotBounds caching
|
||||
- Real-time tick aggregation with RealTimeTickAggregator
|
||||
- COB 1s aggregation with price buckets ($1 for ETH, $10 for BTC)
|
||||
- Multi-timeframe imbalance calculations (1s, 5s, 15s, 60s MA)
|
||||
- Centralized data distribution with subscriber management
|
||||
- COBY standalone system with TimescaleDB storage and Redis caching
|
||||
|
||||
**PARTIALLY IMPLEMENTED:**
|
||||
- ⚠️ COB raw tick storage (30 min buffer) - implemented but needs validation
|
||||
- ⚠️ Training data collection callbacks - structure exists but needs integration
|
||||
- ⚠️ Cross-exchange COB consolidation - COBY system separate from core
|
||||
- COB raw tick storage (30 min buffer) - implemented but needs validation
|
||||
- Training data collection callbacks - structure exists but needs integration
|
||||
- Cross-exchange COB consolidation - COBY system separate from core
|
||||
|
||||
**NEEDS ENHANCEMENT:**
|
||||
- ❌ Unified integration between COBY and core DataProvider
|
||||
- ❌ Configurable price range for COB imbalance (currently hardcoded $5 ETH, $50 BTC)
|
||||
- ❌ COB heatmap matrix generation for model inputs
|
||||
- ❌ Validation of 600-bar caching for backtesting support
|
||||
- Unified integration between COBY and core DataProvider
|
||||
- Configurable price range for COB imbalance (currently hardcoded $5 ETH, $50 BTC)
|
||||
- COB heatmap matrix generation for model inputs
|
||||
- Validation of 600-bar caching for backtesting support
|
||||
|
||||
#### Acceptance Criteria
|
||||
|
||||
@@ -98,19 +98,19 @@ The system is designed to adapt to current market conditions through continuous
|
||||
#### Current Implementation Status
|
||||
|
||||
**IMPLEMENTED:**
|
||||
- ✅ StandardizedDataProvider extending core DataProvider
|
||||
- ✅ BaseDataInput dataclass with comprehensive fields
|
||||
- ✅ OHLCVBar, COBData, PivotPoint, ModelOutput dataclasses
|
||||
- ✅ ModelOutputManager for extensible cross-model feeding
|
||||
- ✅ COB moving average calculation with thread-safe access
|
||||
- ✅ Input validation before model inference
|
||||
- ✅ Live price fetching with multiple fallbacks
|
||||
- StandardizedDataProvider extending core DataProvider
|
||||
- BaseDataInput dataclass with comprehensive fields
|
||||
- OHLCVBar, COBData, PivotPoint, ModelOutput dataclasses
|
||||
- ModelOutputManager for extensible cross-model feeding
|
||||
- COB moving average calculation with thread-safe access
|
||||
- Input validation before model inference
|
||||
- Live price fetching with multiple fallbacks
|
||||
|
||||
**NEEDS ENHANCEMENT:**
|
||||
- ❌ COB heatmap matrix integration in BaseDataInput
|
||||
- ❌ Comprehensive data completeness validation
|
||||
- ❌ Automatic data quality scoring
|
||||
- ❌ Missing data interpolation strategies
|
||||
- COB heatmap matrix integration in BaseDataInput
|
||||
- Comprehensive data completeness validation
|
||||
- Automatic data quality scoring
|
||||
- Missing data interpolation strategies
|
||||
|
||||
#### Acceptance Criteria
|
||||
|
||||
|
||||
4
.vscode/launch.json
vendored
4
.vscode/launch.json
vendored
@@ -135,7 +135,7 @@
|
||||
"preLaunchTask": "Kill Stale Processes"
|
||||
},
|
||||
{
|
||||
"name": "🚀 Integrated COB Dashboard + RL Trading",
|
||||
"name": " Integrated COB Dashboard + RL Trading",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "run_integrated_rl_cob_dashboard.py",
|
||||
@@ -202,7 +202,7 @@
|
||||
],
|
||||
"compounds": [
|
||||
{
|
||||
"name": "🚀 Full System (Dashboard + Training)",
|
||||
"name": " Full System (Dashboard + Training)",
|
||||
"configurations": [
|
||||
"📊 Dashboard (Real-time + Training)",
|
||||
"📊 TensorBoard Monitor"
|
||||
|
||||
@@ -4,22 +4,22 @@
|
||||
|
||||
The Manual Trade Annotation UI is now **functionally complete** with all core features implemented and ready for use.
|
||||
|
||||
## ✅ Completed Tasks (Tasks 1-5)
|
||||
## Completed Tasks (Tasks 1-5)
|
||||
|
||||
### Task 1: Project Structure ✅
|
||||
### Task 1: Project Structure
|
||||
- Complete folder structure in `/ANNOTATE`
|
||||
- Flask/Dash web application
|
||||
- Template-based architecture (all HTML in separate files)
|
||||
- Dark theme CSS
|
||||
- Client-side JavaScript modules
|
||||
|
||||
### Task 2: Data Loading ✅
|
||||
### Task 2: Data Loading
|
||||
- `HistoricalDataLoader` - Integrates with existing DataProvider
|
||||
- `TimeRangeManager` - Time navigation and prefetching
|
||||
- Memory caching with TTL
|
||||
- **Uses same data source as training/inference**
|
||||
|
||||
### Task 3: Chart Visualization ✅
|
||||
### Task 3: Chart Visualization
|
||||
- Multi-timeframe Plotly charts (1s, 1m, 1h, 1d)
|
||||
- Candlestick + volume visualization
|
||||
- Chart synchronization across timeframes
|
||||
@@ -27,14 +27,14 @@ The Manual Trade Annotation UI is now **functionally complete** with all core fe
|
||||
- Zoom and pan functionality
|
||||
- Scroll zoom enabled
|
||||
|
||||
### Task 4: Time Navigation ✅
|
||||
### Task 4: Time Navigation
|
||||
- Date/time picker
|
||||
- Quick range buttons (1h, 4h, 1d, 1w)
|
||||
- Forward/backward navigation
|
||||
- Keyboard shortcuts (arrow keys)
|
||||
- Time range calculations
|
||||
|
||||
### Task 5: Trade Annotation ✅
|
||||
### Task 5: Trade Annotation
|
||||
- Click to mark entry/exit points
|
||||
- Visual markers on charts (▲ entry, ▼ exit)
|
||||
- P&L calculation and display
|
||||
@@ -44,7 +44,7 @@ The Manual Trade Annotation UI is now **functionally complete** with all core fe
|
||||
|
||||
## 🎯 Key Features
|
||||
|
||||
### 1. Data Consistency ✅
|
||||
### 1. Data Consistency
|
||||
```python
|
||||
# Same DataProvider used everywhere
|
||||
DataProvider → HistoricalDataLoader → Annotation UI
|
||||
@@ -52,7 +52,7 @@ DataProvider → HistoricalDataLoader → Annotation UI
|
||||
Training/Inference
|
||||
```
|
||||
|
||||
### 2. Test Case Generation ✅
|
||||
### 2. Test Case Generation
|
||||
```python
|
||||
# Generates test cases in realtime format
|
||||
{
|
||||
@@ -75,14 +75,14 @@ DataProvider → HistoricalDataLoader → Annotation UI
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Visual Annotation System ✅
|
||||
### 3. Visual Annotation System
|
||||
- **Entry markers**: Green/Red triangles (▲)
|
||||
- **Exit markers**: Green/Red triangles (▼)
|
||||
- **P&L labels**: Displayed with percentage
|
||||
- **Connecting lines**: Dashed lines between entry/exit
|
||||
- **Color coding**: Green for LONG, Red for SHORT
|
||||
|
||||
### 4. Chart Features ✅
|
||||
### 4. Chart Features
|
||||
- **Multi-timeframe**: 4 synchronized charts
|
||||
- **Candlestick**: OHLC visualization
|
||||
- **Volume bars**: Color-coded by direction
|
||||
@@ -164,7 +164,7 @@ Save to test_cases/annotation_*.json
|
||||
└─────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## 🚀 Usage Guide
|
||||
## Usage Guide
|
||||
|
||||
### 1. Start the Application
|
||||
```bash
|
||||
@@ -278,12 +278,12 @@ Export annotations to JSON/CSV
|
||||
|
||||
## 🎯 Next Steps (Optional Enhancements)
|
||||
|
||||
### Task 6: Annotation Storage ✅ (Already Complete)
|
||||
### Task 6: Annotation Storage (Already Complete)
|
||||
- JSON-based storage implemented
|
||||
- CRUD operations working
|
||||
- Auto-save functionality
|
||||
|
||||
### Task 7: Test Case Generation ✅ (Already Complete)
|
||||
### Task 7: Test Case Generation (Already Complete)
|
||||
- Realtime format implemented
|
||||
- Market context extraction working
|
||||
- File storage implemented
|
||||
@@ -304,14 +304,14 @@ Export annotations to JSON/CSV
|
||||
|
||||
## ✨ Key Achievements
|
||||
|
||||
1. **✅ Data Consistency**: Uses same DataProvider as training/inference
|
||||
2. **✅ Template Architecture**: All HTML in separate files
|
||||
3. **✅ Dark Theme**: Professional UI matching main dashboard
|
||||
4. **✅ Multi-Timeframe**: 4 synchronized charts
|
||||
5. **✅ Visual Annotations**: Clear entry/exit markers with P&L
|
||||
6. **✅ Test Case Generation**: Realtime format with market context
|
||||
7. **✅ Self-Contained**: Isolated in /ANNOTATE folder
|
||||
8. **✅ Production Ready**: Functional core features complete
|
||||
1. ** Data Consistency**: Uses same DataProvider as training/inference
|
||||
2. ** Template Architecture**: All HTML in separate files
|
||||
3. ** Dark Theme**: Professional UI matching main dashboard
|
||||
4. ** Multi-Timeframe**: 4 synchronized charts
|
||||
5. ** Visual Annotations**: Clear entry/exit markers with P&L
|
||||
6. ** Test Case Generation**: Realtime format with market context
|
||||
7. ** Self-Contained**: Isolated in /ANNOTATE folder
|
||||
8. ** Production Ready**: Functional core features complete
|
||||
|
||||
## 🎊 Success Criteria Met
|
||||
|
||||
@@ -326,14 +326,14 @@ Export annotations to JSON/CSV
|
||||
- [ ] Model training integration (optional)
|
||||
- [ ] Inference simulation (optional)
|
||||
|
||||
## 🚀 Ready for Use!
|
||||
## Ready for Use!
|
||||
|
||||
The ANNOTATE system is now **ready for production use**. You can:
|
||||
|
||||
1. ✅ Mark profitable trades on historical data
|
||||
2. ✅ Generate training test cases
|
||||
3. ✅ Visualize annotations on charts
|
||||
4. ✅ Export annotations for analysis
|
||||
5. ✅ Use same data as training/inference
|
||||
1. Mark profitable trades on historical data
|
||||
2. Generate training test cases
|
||||
3. Visualize annotations on charts
|
||||
4. Export annotations for analysis
|
||||
5. Use same data as training/inference
|
||||
|
||||
The core functionality is complete and the system is ready to generate high-quality training data for your models! 🎉
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
# ANNOTATE Project Progress
|
||||
|
||||
## ✅ Completed Tasks
|
||||
## Completed Tasks
|
||||
|
||||
### Task 1: Project Structure and Base Templates ✅
|
||||
### Task 1: Project Structure and Base Templates
|
||||
**Status**: Complete
|
||||
|
||||
**What was built**:
|
||||
@@ -33,7 +33,7 @@ ANNOTATE/
|
||||
└── data/ (storage directories)
|
||||
```
|
||||
|
||||
### Task 2: Data Loading and Caching Layer ✅
|
||||
### Task 2: Data Loading and Caching Layer
|
||||
**Status**: Complete
|
||||
|
||||
**What was built**:
|
||||
@@ -46,11 +46,11 @@ ANNOTATE/
|
||||
- Prefetching for smooth scrolling
|
||||
|
||||
**Key Features**:
|
||||
- ✅ Uses the **same DataProvider** as training/inference systems
|
||||
- ✅ Ensures **data consistency** across annotation, training, and inference
|
||||
- ✅ Caches data for performance
|
||||
- ✅ Supports time-based navigation
|
||||
- ✅ Prefetches adjacent ranges for smooth UX
|
||||
- Uses the **same DataProvider** as training/inference systems
|
||||
- Ensures **data consistency** across annotation, training, and inference
|
||||
- Caches data for performance
|
||||
- Supports time-based navigation
|
||||
- Prefetches adjacent ranges for smooth UX
|
||||
|
||||
**Integration Points**:
|
||||
```python
|
||||
@@ -67,14 +67,14 @@ df = data_loader.get_data('ETH/USDT', '1m', limit=500)
|
||||
## 🎯 Current Status
|
||||
|
||||
### Application Status
|
||||
- ✅ Flask server running on http://127.0.0.1:8051
|
||||
- ✅ Templates rendering correctly
|
||||
- ✅ Data loading integrated with existing DataProvider
|
||||
- ✅ Dark theme UI implemented
|
||||
- ✅ Chart visualization (COMPLETE)
|
||||
- ✅ Annotation functionality (COMPLETE)
|
||||
- ✅ Test case generation (COMPLETE)
|
||||
- ✅ **CORE FEATURES COMPLETE - READY FOR USE!**
|
||||
- Flask server running on http://127.0.0.1:8051
|
||||
- Templates rendering correctly
|
||||
- Data loading integrated with existing DataProvider
|
||||
- Dark theme UI implemented
|
||||
- Chart visualization (COMPLETE)
|
||||
- Annotation functionality (COMPLETE)
|
||||
- Test case generation (COMPLETE)
|
||||
- **CORE FEATURES COMPLETE - READY FOR USE!**
|
||||
|
||||
### Data Flow
|
||||
```
|
||||
@@ -146,11 +146,11 @@ The ANNOTATE system ensures data consistency by:
|
||||
5. **Shared Configuration**: Uses main config.yaml
|
||||
|
||||
### Architecture Benefits
|
||||
- ✅ **No Data Duplication**: Single source of truth
|
||||
- ✅ **Consistent Quality**: Same data cleaning/validation
|
||||
- ✅ **Performance**: Leverages existing caching
|
||||
- ✅ **Maintainability**: Changes to DataProvider automatically propagate
|
||||
- ✅ **Testing**: Annotations use same data as models see
|
||||
- **No Data Duplication**: Single source of truth
|
||||
- **Consistent Quality**: Same data cleaning/validation
|
||||
- **Performance**: Leverages existing caching
|
||||
- **Maintainability**: Changes to DataProvider automatically propagate
|
||||
- **Testing**: Annotations use same data as models see
|
||||
|
||||
### Test Case Generation
|
||||
When an annotation is created, the system will:
|
||||
@@ -162,7 +162,7 @@ When an annotation is created, the system will:
|
||||
|
||||
This ensures models can be trained on manually validated scenarios using the exact same data structure.
|
||||
|
||||
## 🚀 Running the Application
|
||||
## Running the Application
|
||||
|
||||
### Start the Server
|
||||
```bash
|
||||
@@ -198,10 +198,10 @@ test_cases = annotation_mgr.get_test_cases()
|
||||
|
||||
## 📝 Notes
|
||||
|
||||
- All HTML is in templates (requirement met ✅)
|
||||
- Dark theme implemented (requirement met ✅)
|
||||
- Data consistency ensured (requirement met ✅)
|
||||
- Self-contained in /ANNOTATE folder (requirement met ✅)
|
||||
- All HTML is in templates (requirement met )
|
||||
- Dark theme implemented (requirement met )
|
||||
- Data consistency ensured (requirement met )
|
||||
- Self-contained in /ANNOTATE folder (requirement met )
|
||||
- Ready for chart implementation (next step)
|
||||
|
||||
## 🎯 Success Criteria
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
A professional web-based interface for manually marking profitable buy/sell signals on historical market data to generate high-quality training test cases for machine learning models.
|
||||
|
||||
**Status**: ✅ **Production Ready** - Core features complete and tested
|
||||
**Status**: **Production Ready** - Core features complete and tested
|
||||
|
||||
## ✨ Key Features
|
||||
|
||||
@@ -27,7 +27,7 @@ A professional web-based interface for manually marking profitable buy/sell sign
|
||||
- **Data consistency**: Uses same DataProvider as training/inference
|
||||
- **Auto-save**: Test cases saved to JSON files
|
||||
|
||||
### 🔄 Data Integration
|
||||
### Data Integration
|
||||
- **Existing DataProvider**: No duplicate data fetching
|
||||
- **Cached data**: Leverages existing cache
|
||||
- **Same quality**: Identical data structure as models see
|
||||
@@ -39,7 +39,7 @@ A professional web-based interface for manually marking profitable buy/sell sign
|
||||
- **Responsive**: Works on different screen sizes
|
||||
- **Keyboard shortcuts**: Arrow keys for navigation
|
||||
|
||||
## 🚀 Quick Start
|
||||
## Quick Start
|
||||
|
||||
### Installation
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ Real-time inference mode runs your trained model on **live streaming data** from
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Starting Real-Time Inference
|
||||
## Starting Real-Time Inference
|
||||
|
||||
### Step 1: Select Model
|
||||
Choose the model you want to run from the dropdown in the training panel.
|
||||
@@ -97,16 +97,16 @@ Charts updating every 1s
|
||||
- **False positives** - Signals that shouldn't happen
|
||||
|
||||
### Good Signs
|
||||
- ✅ Signals at key levels (support/resistance)
|
||||
- ✅ High confidence (>70%)
|
||||
- ✅ Signals match your analysis
|
||||
- ✅ Few false positives
|
||||
- Signals at key levels (support/resistance)
|
||||
- High confidence (>70%)
|
||||
- Signals match your analysis
|
||||
- Few false positives
|
||||
|
||||
### Warning Signs
|
||||
- ⚠️ Too many signals (every second)
|
||||
- ⚠️ Low confidence (<50%)
|
||||
- ⚠️ Random signals
|
||||
- ⚠️ Signals don't match patterns
|
||||
- Too many signals (every second)
|
||||
- Low confidence (<50%)
|
||||
- Random signals
|
||||
- Signals don't match patterns
|
||||
|
||||
---
|
||||
|
||||
@@ -234,7 +234,7 @@ All 4 charts update simultaneously. Watch for:
|
||||
- Signals match training patterns
|
||||
- Timing is precise
|
||||
- No false positives
|
||||
- Model learned correctly ✅
|
||||
- Model learned correctly
|
||||
|
||||
**5. Stop Inference**
|
||||
- Click "Stop Inference"
|
||||
@@ -247,34 +247,34 @@ All 4 charts update simultaneously. Watch for:
|
||||
## 🎯 Best Practices
|
||||
|
||||
### Before Starting
|
||||
- ✅ Train model first
|
||||
- ✅ Verify model loaded
|
||||
- ✅ Check DataProvider has data
|
||||
- ✅ Close unnecessary tabs
|
||||
- Train model first
|
||||
- Verify model loaded
|
||||
- Check DataProvider has data
|
||||
- Close unnecessary tabs
|
||||
|
||||
### During Inference
|
||||
- ✅ Monitor all timeframes
|
||||
- ✅ Note signal quality
|
||||
- ✅ Check confidence levels
|
||||
- ✅ Compare with your analysis
|
||||
- Monitor all timeframes
|
||||
- Note signal quality
|
||||
- Check confidence levels
|
||||
- Compare with your analysis
|
||||
|
||||
### After Stopping
|
||||
- ✅ Review signal history
|
||||
- ✅ Note performance
|
||||
- ✅ Identify improvements
|
||||
- ✅ Adjust training if needed
|
||||
- Review signal history
|
||||
- Note performance
|
||||
- Identify improvements
|
||||
- Adjust training if needed
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Summary
|
||||
## Summary
|
||||
|
||||
Real-time inference provides:
|
||||
|
||||
✅ **Live chart updates** (1/second)
|
||||
✅ **Model predictions** in real-time
|
||||
✅ **Signal markers** on charts
|
||||
✅ **Confidence levels** displayed
|
||||
✅ **Performance monitoring** built-in
|
||||
**Live chart updates** (1/second)
|
||||
**Model predictions** in real-time
|
||||
**Signal markers** on charts
|
||||
**Confidence levels** displayed
|
||||
**Performance monitoring** built-in
|
||||
|
||||
Use it to:
|
||||
- **Validate training** - Check model learned correctly
|
||||
|
||||
@@ -3,62 +3,62 @@
|
||||
## 🎉 Project Complete!
|
||||
|
||||
**Date**: January 2025
|
||||
**Status**: ✅ **Production Ready**
|
||||
**Status**: **Production Ready**
|
||||
**Completion**: **Tasks 1-8 Complete** (Core + Model Integration)
|
||||
|
||||
---
|
||||
|
||||
## ✅ Completed Tasks Summary
|
||||
## Completed Tasks Summary
|
||||
|
||||
### ✅ Task 1: Project Structure and Base Templates
|
||||
### Task 1: Project Structure and Base Templates
|
||||
- Complete folder structure in `/ANNOTATE`
|
||||
- Flask/Dash application framework
|
||||
- Template-based architecture (all HTML separate)
|
||||
- Dark theme CSS styling
|
||||
- Client-side JavaScript modules
|
||||
|
||||
### ✅ Task 2: Data Loading and Caching Layer
|
||||
### Task 2: Data Loading and Caching Layer
|
||||
- `HistoricalDataLoader` class
|
||||
- `TimeRangeManager` for navigation
|
||||
- Integration with existing DataProvider
|
||||
- Memory caching with TTL
|
||||
- Multi-timeframe data loading
|
||||
|
||||
### ✅ Task 3: Multi-Timeframe Chart Visualization
|
||||
### Task 3: Multi-Timeframe Chart Visualization
|
||||
- Plotly candlestick charts (4 timeframes)
|
||||
- Volume bars with color coding
|
||||
- Chart synchronization
|
||||
- Hover information display
|
||||
- Zoom and pan functionality
|
||||
|
||||
### ✅ Task 4: Time Navigation System
|
||||
### Task 4: Time Navigation System
|
||||
- Date/time picker
|
||||
- Quick range buttons
|
||||
- Forward/backward navigation
|
||||
- Keyboard shortcuts
|
||||
- Time range calculations
|
||||
|
||||
### ✅ Task 5: Trade Annotation System
|
||||
### Task 5: Trade Annotation System
|
||||
- Click-to-mark entry/exit
|
||||
- Visual markers (▲▼)
|
||||
- P&L calculation
|
||||
- Connecting lines
|
||||
- Edit/delete functionality
|
||||
|
||||
### ✅ Task 6: Annotation Storage and Management
|
||||
### Task 6: Annotation Storage and Management
|
||||
- JSON-based storage
|
||||
- CRUD operations
|
||||
- Annotation validation
|
||||
- Listing UI
|
||||
- Export functionality
|
||||
|
||||
### ✅ Task 7: Test Case Generation System
|
||||
### Task 7: Test Case Generation System
|
||||
- Realtime format generation
|
||||
- Market context extraction
|
||||
- File storage
|
||||
- DataProvider integration
|
||||
|
||||
### ✅ Task 8: Model Loading and Management
|
||||
### Task 8: Model Loading and Management
|
||||
- TrainingSimulator class
|
||||
- Model loading from orchestrator
|
||||
- Available models API
|
||||
@@ -76,51 +76,51 @@
|
||||
- **Total Lines**: ~2,500+ lines of code
|
||||
|
||||
### Features Implemented
|
||||
- ✅ Multi-timeframe charts (4 timeframes)
|
||||
- ✅ Visual annotations with P&L
|
||||
- ✅ Test case generation
|
||||
- ✅ Data consistency with training
|
||||
- ✅ Model integration
|
||||
- ✅ Dark theme UI
|
||||
- ✅ Keyboard shortcuts
|
||||
- ✅ Export functionality
|
||||
- Multi-timeframe charts (4 timeframes)
|
||||
- Visual annotations with P&L
|
||||
- Test case generation
|
||||
- Data consistency with training
|
||||
- Model integration
|
||||
- Dark theme UI
|
||||
- Keyboard shortcuts
|
||||
- Export functionality
|
||||
|
||||
### API Endpoints
|
||||
- ✅ `/` - Main dashboard
|
||||
- ✅ `/api/chart-data` - Get chart data
|
||||
- ✅ `/api/save-annotation` - Save annotation
|
||||
- ✅ `/api/delete-annotation` - Delete annotation
|
||||
- ✅ `/api/generate-test-case` - Generate test case
|
||||
- ✅ `/api/export-annotations` - Export annotations
|
||||
- ✅ `/api/train-model` - Start training
|
||||
- ✅ `/api/training-progress` - Get progress
|
||||
- ✅ `/api/available-models` - List models
|
||||
- `/` - Main dashboard
|
||||
- `/api/chart-data` - Get chart data
|
||||
- `/api/save-annotation` - Save annotation
|
||||
- `/api/delete-annotation` - Delete annotation
|
||||
- `/api/generate-test-case` - Generate test case
|
||||
- `/api/export-annotations` - Export annotations
|
||||
- `/api/train-model` - Start training
|
||||
- `/api/training-progress` - Get progress
|
||||
- `/api/available-models` - List models
|
||||
|
||||
---
|
||||
|
||||
## 🎯 Key Achievements
|
||||
|
||||
### 1. Data Consistency ✅
|
||||
### 1. Data Consistency
|
||||
**Problem**: Annotations need same data as training/inference
|
||||
**Solution**: Integrated with existing DataProvider
|
||||
**Result**: Perfect data consistency across all systems
|
||||
|
||||
### 2. Visual Annotation System ✅
|
||||
### 2. Visual Annotation System
|
||||
**Problem**: Need intuitive way to mark trades
|
||||
**Solution**: Click-based marking with visual feedback
|
||||
**Result**: Professional TradingView-like interface
|
||||
|
||||
### 3. Test Case Generation ✅
|
||||
### 3. Test Case Generation
|
||||
**Problem**: Need training data in correct format
|
||||
**Solution**: Generate test cases with full market context
|
||||
**Result**: Ready-to-use training data
|
||||
|
||||
### 4. Model Integration ✅
|
||||
### 4. Model Integration
|
||||
**Problem**: Need to load and use existing models
|
||||
**Solution**: TrainingSimulator with orchestrator integration
|
||||
**Result**: Can load CNN, DQN, Transformer, COB models
|
||||
|
||||
### 5. Template Architecture ✅
|
||||
### 5. Template Architecture
|
||||
**Problem**: Maintainable HTML structure
|
||||
**Solution**: Jinja2 templates with component separation
|
||||
**Result**: Clean, maintainable codebase
|
||||
@@ -237,7 +237,7 @@ User Click → JavaScript → Flask API → AnnotationManager → JSON Storage
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Deployment Checklist
|
||||
## Deployment Checklist
|
||||
|
||||
- [x] Code complete and tested
|
||||
- [x] Documentation written
|
||||
@@ -255,22 +255,22 @@ User Click → JavaScript → Flask API → AnnotationManager → JSON Storage
|
||||
## 📊 Success Metrics
|
||||
|
||||
### Functionality
|
||||
- ✅ 100% of core features implemented
|
||||
- ✅ 100% of API endpoints working
|
||||
- ✅ 100% data consistency achieved
|
||||
- ✅ 100% template-based architecture
|
||||
- 100% of core features implemented
|
||||
- 100% of API endpoints working
|
||||
- 100% data consistency achieved
|
||||
- 100% template-based architecture
|
||||
|
||||
### Quality
|
||||
- ✅ Clean code structure
|
||||
- ✅ Comprehensive documentation
|
||||
- ✅ Error handling
|
||||
- ✅ Performance optimized
|
||||
- Clean code structure
|
||||
- Comprehensive documentation
|
||||
- Error handling
|
||||
- Performance optimized
|
||||
|
||||
### Integration
|
||||
- ✅ DataProvider integration
|
||||
- ✅ Orchestrator integration
|
||||
- ✅ Model loading
|
||||
- ✅ Test case generation
|
||||
- DataProvider integration
|
||||
- Orchestrator integration
|
||||
- Model loading
|
||||
- Test case generation
|
||||
|
||||
---
|
||||
|
||||
@@ -308,11 +308,11 @@ The ANNOTATE project is **complete and production-ready**. All core features hav
|
||||
5. **Production Ready**: Fully functional and documented
|
||||
|
||||
### Ready For
|
||||
- ✅ Marking profitable trades
|
||||
- ✅ Generating training test cases
|
||||
- ✅ Model training integration
|
||||
- ✅ Production deployment
|
||||
- ✅ Team usage
|
||||
- Marking profitable trades
|
||||
- Generating training test cases
|
||||
- Model training integration
|
||||
- Production deployment
|
||||
- Team usage
|
||||
|
||||
**Status**: 🎉 **COMPLETE AND READY FOR USE!**
|
||||
|
||||
|
||||
@@ -3,9 +3,9 @@
|
||||
## 🎯 Overview
|
||||
|
||||
The ANNOTATE system generates training data that includes **±5 minutes of market data** around each trade signal. This allows models to learn:
|
||||
- ✅ **WHERE to generate signals** (at entry/exit points)
|
||||
- ✅ **WHERE NOT to generate signals** (before entry, after exit)
|
||||
- ✅ **Context around the signal** (what led to the trade)
|
||||
- **WHERE to generate signals** (at entry/exit points)
|
||||
- **WHERE NOT to generate signals** (before entry, after exit)
|
||||
- **Context around the signal** (what led to the trade)
|
||||
|
||||
---
|
||||
|
||||
@@ -259,11 +259,11 @@ for timestamp, label in zip(timestamps, labels):
|
||||
```
|
||||
|
||||
**Model Learns:**
|
||||
- ✅ Don't signal during consolidation
|
||||
- ✅ Signal at breakout confirmation
|
||||
- ✅ Hold during profitable move
|
||||
- ✅ Exit at target
|
||||
- ✅ Don't signal after exit
|
||||
- Don't signal during consolidation
|
||||
- Signal at breakout confirmation
|
||||
- Hold during profitable move
|
||||
- Exit at target
|
||||
- Don't signal after exit
|
||||
|
||||
---
|
||||
|
||||
@@ -290,16 +290,16 @@ print(f"EXIT: {labels.count(3)}")
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Summary
|
||||
## Summary
|
||||
|
||||
The ANNOTATE system generates **production-ready training data** with:
|
||||
|
||||
✅ **±5 minutes of context** around each signal
|
||||
✅ **Training labels** for each timestamp
|
||||
✅ **Negative examples** (where NOT to signal)
|
||||
✅ **Positive examples** (where TO signal)
|
||||
✅ **All 4 timeframes** (1s, 1m, 1h, 1d)
|
||||
✅ **Complete market state** (OHLCV data)
|
||||
**±5 minutes of context** around each signal
|
||||
**Training labels** for each timestamp
|
||||
**Negative examples** (where NOT to signal)
|
||||
**Positive examples** (where TO signal)
|
||||
**All 4 timeframes** (1s, 1m, 1h, 1d)
|
||||
**Complete market state** (OHLCV data)
|
||||
|
||||
This enables models to learn:
|
||||
- **Precise timing** of entry/exit signals
|
||||
|
||||
@@ -18,11 +18,11 @@ When you save an annotation, a test case is **automatically generated** and save
|
||||
|
||||
### What's Included
|
||||
Each test case contains:
|
||||
- ✅ **Market State** - OHLCV data for all 4 timeframes (100 candles each)
|
||||
- ✅ **Entry/Exit Prices** - Exact prices from annotation
|
||||
- ✅ **Expected Outcome** - Direction (LONG/SHORT) and P&L percentage
|
||||
- ✅ **Timestamp** - When the trade occurred
|
||||
- ✅ **Action** - BUY or SELL signal
|
||||
- **Market State** - OHLCV data for all 4 timeframes (100 candles each)
|
||||
- **Entry/Exit Prices** - Exact prices from annotation
|
||||
- **Expected Outcome** - Direction (LONG/SHORT) and P&L percentage
|
||||
- **Timestamp** - When the trade occurred
|
||||
- **Action** - BUY or SELL signal
|
||||
|
||||
### Test Case Format
|
||||
```json
|
||||
@@ -105,7 +105,7 @@ The system integrates with your existing models:
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Real-Time Inference
|
||||
## Real-Time Inference
|
||||
|
||||
### Overview
|
||||
Real-time inference mode runs your trained model on **live streaming data** from the DataProvider, generating predictions in real-time.
|
||||
@@ -298,7 +298,7 @@ model = orchestrator.cob_rl_agent
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Advanced Usage
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Training Parameters
|
||||
Edit `ANNOTATE/core/training_simulator.py`:
|
||||
@@ -345,11 +345,11 @@ models/checkpoints/ (main system)
|
||||
|
||||
The ANNOTATE system provides:
|
||||
|
||||
✅ **Automatic Test Case Generation** - From annotations
|
||||
✅ **Production-Ready Training** - Integrates with orchestrator
|
||||
✅ **Real-Time Inference** - Live predictions on streaming data
|
||||
✅ **Data Consistency** - Same data as main system
|
||||
✅ **Easy Monitoring** - Real-time progress and signals
|
||||
**Automatic Test Case Generation** - From annotations
|
||||
**Production-Ready Training** - Integrates with orchestrator
|
||||
**Real-Time Inference** - Live predictions on streaming data
|
||||
**Data Consistency** - Same data as main system
|
||||
**Easy Monitoring** - Real-time progress and signals
|
||||
|
||||
**You can now:**
|
||||
1. Mark profitable trades
|
||||
@@ -360,4 +360,4 @@ The ANNOTATE system provides:
|
||||
|
||||
---
|
||||
|
||||
**Happy Training!** 🚀
|
||||
**Happy Training!**
|
||||
|
||||
@@ -24,12 +24,12 @@ Access at: **http://127.0.0.1:8051**
|
||||
|
||||
### What Gets Captured
|
||||
When you create an annotation, the system captures:
|
||||
- ✅ **Entry timestamp and price**
|
||||
- ✅ **Exit timestamp and price**
|
||||
- ✅ **Full market state** (OHLCV for all 4 timeframes)
|
||||
- ✅ **Direction** (LONG/SHORT)
|
||||
- ✅ **P&L percentage**
|
||||
- ✅ **Market context** at both entry and exit
|
||||
- **Entry timestamp and price**
|
||||
- **Exit timestamp and price**
|
||||
- **Full market state** (OHLCV for all 4 timeframes)
|
||||
- **Direction** (LONG/SHORT)
|
||||
- **P&L percentage**
|
||||
- **Market context** at both entry and exit
|
||||
|
||||
This ensures the annotation contains **exactly the same data** your models will see during training!
|
||||
|
||||
@@ -99,10 +99,10 @@ This ensures the annotation contains **exactly the same data** your models will
|
||||
|
||||
### Automatic Generation
|
||||
When you save an annotation, the system:
|
||||
1. ✅ Captures market state at entry time
|
||||
2. ✅ Captures market state at exit time
|
||||
3. ✅ Stores OHLCV data for all timeframes
|
||||
4. ✅ Calculates expected outcome (P&L, direction)
|
||||
1. Captures market state at entry time
|
||||
2. Captures market state at exit time
|
||||
3. Stores OHLCV data for all timeframes
|
||||
4. Calculates expected outcome (P&L, direction)
|
||||
|
||||
### Manual Generation
|
||||
1. Find annotation in sidebar
|
||||
@@ -232,11 +232,11 @@ Export annotations regularly to backup your work.
|
||||
### Why It Matters
|
||||
The annotation system uses the **same DataProvider** as your training and inference systems. This means:
|
||||
|
||||
✅ **Same data source**
|
||||
✅ **Same data quality**
|
||||
✅ **Same data structure**
|
||||
✅ **Same timeframes**
|
||||
✅ **Same caching**
|
||||
**Same data source**
|
||||
**Same data quality**
|
||||
**Same data structure**
|
||||
**Same timeframes**
|
||||
**Same caching**
|
||||
|
||||
### What This Guarantees
|
||||
When you train a model on annotated data:
|
||||
@@ -282,7 +282,7 @@ ANNOTATE/data/annotations/export_<timestamp>.json
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Next Steps
|
||||
## Next Steps
|
||||
|
||||
After creating annotations:
|
||||
|
||||
|
||||
@@ -54,18 +54,18 @@ from utils.checkpoint_manager import get_checkpoint_manager
|
||||
|
||||
## NEVER DO THIS
|
||||
|
||||
❌ Create files with "simulator", "simulation", "mock", "fake" in the name
|
||||
❌ Use placeholder/dummy training loops
|
||||
❌ Return fake metrics or results
|
||||
❌ Skip actual model training
|
||||
Create files with "simulator", "simulation", "mock", "fake" in the name
|
||||
Use placeholder/dummy training loops
|
||||
Return fake metrics or results
|
||||
Skip actual model training
|
||||
|
||||
## ALWAYS DO THIS
|
||||
|
||||
✅ Use real model training methods
|
||||
✅ Integrate with existing training systems
|
||||
✅ Save real checkpoints
|
||||
✅ Track real metrics
|
||||
✅ Handle real data
|
||||
Use real model training methods
|
||||
Integrate with existing training systems
|
||||
Save real checkpoints
|
||||
Track real metrics
|
||||
Handle real data
|
||||
|
||||
---
|
||||
|
||||
|
||||
@@ -82,7 +82,7 @@ class HistoricalDataLoader:
|
||||
# Use cached data if we have enough candles
|
||||
if len(cached_df) >= min(limit, 100): # Use cached if we have at least 100 candles
|
||||
elapsed_ms = (time.time() - start_time_ms) * 1000
|
||||
logger.debug(f"🚀 DataProvider cache hit for {symbol} {timeframe} ({len(cached_df)} candles, {elapsed_ms:.1f}ms)")
|
||||
logger.debug(f" DataProvider cache hit for {symbol} {timeframe} ({len(cached_df)} candles, {elapsed_ms:.1f}ms)")
|
||||
|
||||
# Filter by time range with direction support
|
||||
filtered_df = self._filter_by_time_range(
|
||||
@@ -177,7 +177,7 @@ class HistoricalDataLoader:
|
||||
|
||||
if df is not None and not df.empty:
|
||||
elapsed_ms = (time.time() - start_time_ms) * 1000
|
||||
logger.info(f"✅ DuckDB hit for {symbol} {timeframe} ({len(df)} candles, {elapsed_ms:.1f}ms)")
|
||||
logger.info(f" DuckDB hit for {symbol} {timeframe} ({len(df)} candles, {elapsed_ms:.1f}ms)")
|
||||
# Cache in memory
|
||||
self.memory_cache[cache_key] = (df.copy(), datetime.now())
|
||||
return df
|
||||
@@ -346,7 +346,7 @@ class HistoricalDataLoader:
|
||||
df = df.set_index('timestamp')
|
||||
df = df.sort_index()
|
||||
|
||||
logger.info(f"✅ Fetched {len(df)} candles from Binance for {symbol} {timeframe}")
|
||||
logger.info(f" Fetched {len(df)} candles from Binance for {symbol} {timeframe}")
|
||||
return df
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -171,23 +171,23 @@ class RealTrainingAdapter:
|
||||
if not training_data:
|
||||
raise Exception("No valid training data prepared from test cases")
|
||||
|
||||
logger.info(f"✅ Prepared {len(training_data)} training samples")
|
||||
logger.info(f" Prepared {len(training_data)} training samples")
|
||||
|
||||
# Route to appropriate REAL training method
|
||||
if model_name in ["CNN", "StandardizedCNN"]:
|
||||
logger.info("🔄 Starting CNN training...")
|
||||
logger.info(" Starting CNN training...")
|
||||
self._train_cnn_real(session, training_data)
|
||||
elif model_name == "DQN":
|
||||
logger.info("🔄 Starting DQN training...")
|
||||
logger.info(" Starting DQN training...")
|
||||
self._train_dqn_real(session, training_data)
|
||||
elif model_name == "Transformer":
|
||||
logger.info("🔄 Starting Transformer training...")
|
||||
logger.info(" Starting Transformer training...")
|
||||
self._train_transformer_real(session, training_data)
|
||||
elif model_name == "COB":
|
||||
logger.info("🔄 Starting COB training...")
|
||||
logger.info(" Starting COB training...")
|
||||
self._train_cob_real(session, training_data)
|
||||
elif model_name == "Extrema":
|
||||
logger.info("🔄 Starting Extrema training...")
|
||||
logger.info(" Starting Extrema training...")
|
||||
self._train_extrema_real(session, training_data)
|
||||
else:
|
||||
raise Exception(f"Unknown model type: {model_name}")
|
||||
@@ -196,12 +196,12 @@ class RealTrainingAdapter:
|
||||
session.status = 'completed'
|
||||
session.duration_seconds = time.time() - session.start_time
|
||||
|
||||
logger.info(f"✅ REAL training completed: {training_id} in {session.duration_seconds:.2f}s")
|
||||
logger.info(f" REAL training completed: {training_id} in {session.duration_seconds:.2f}s")
|
||||
logger.info(f" Final loss: {session.final_loss}")
|
||||
logger.info(f" Accuracy: {session.accuracy}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ REAL training failed: {e}", exc_info=True)
|
||||
logger.error(f" REAL training failed: {e}", exc_info=True)
|
||||
session.status = 'failed'
|
||||
session.error = str(e)
|
||||
session.duration_seconds = time.time() - session.start_time
|
||||
@@ -266,15 +266,15 @@ class RealTrainingAdapter:
|
||||
'close': df['close'].tolist(),
|
||||
'volume': df['volume'].tolist()
|
||||
}
|
||||
logger.debug(f" ✅ {timeframe}: {len(df)} candles")
|
||||
logger.debug(f" {timeframe}: {len(df)} candles")
|
||||
else:
|
||||
logger.warning(f" ❌ {timeframe}: No data")
|
||||
logger.warning(f" {timeframe}: No data")
|
||||
|
||||
if market_state['timeframes']:
|
||||
logger.info(f" ✅ Fetched market state with {len(market_state['timeframes'])} timeframes")
|
||||
logger.info(f" Fetched market state with {len(market_state['timeframes'])} timeframes")
|
||||
return market_state
|
||||
else:
|
||||
logger.warning(f" ❌ No market data fetched")
|
||||
logger.warning(f" No market data fetched")
|
||||
return {}
|
||||
|
||||
except Exception as e:
|
||||
@@ -309,7 +309,7 @@ class RealTrainingAdapter:
|
||||
expected_outcome = test_case.get('expected_outcome', {})
|
||||
|
||||
if not expected_outcome:
|
||||
logger.warning(f"⚠️ Skipping test case {test_case.get('test_case_id')}: missing expected_outcome")
|
||||
logger.warning(f" Skipping test case {test_case.get('test_case_id')}: missing expected_outcome")
|
||||
continue
|
||||
|
||||
# Check if market_state is provided, if not, fetch it dynamically
|
||||
@@ -320,7 +320,7 @@ class RealTrainingAdapter:
|
||||
market_state = self._fetch_market_state_for_test_case(test_case)
|
||||
|
||||
if not market_state:
|
||||
logger.warning(f"⚠️ Skipping test case {test_case.get('test_case_id')}: could not fetch market state")
|
||||
logger.warning(f" Skipping test case {test_case.get('test_case_id')}: could not fetch market state")
|
||||
continue
|
||||
|
||||
logger.debug(f" Test case {i+1}: has_market_state={bool(market_state)}, has_expected_outcome={bool(expected_outcome)}")
|
||||
@@ -339,7 +339,7 @@ class RealTrainingAdapter:
|
||||
}
|
||||
|
||||
training_data.append(entry_sample)
|
||||
logger.debug(f" ✅ Entry sample: {entry_sample['direction']} @ {entry_sample['entry_price']}")
|
||||
logger.debug(f" Entry sample: {entry_sample['direction']} @ {entry_sample['entry_price']}")
|
||||
|
||||
# Create HOLD samples (every candle while position is open)
|
||||
# This teaches the model to maintain the position until exit
|
||||
@@ -367,7 +367,7 @@ class RealTrainingAdapter:
|
||||
'repetitions': training_repetitions
|
||||
}
|
||||
training_data.append(exit_sample)
|
||||
logger.debug(f" ✅ Exit sample @ {exit_sample['exit_price']} ({exit_sample['profit_loss_pct']:.2f}%)")
|
||||
logger.debug(f" Exit sample @ {exit_sample['exit_price']} ({exit_sample['profit_loss_pct']:.2f}%)")
|
||||
|
||||
# Create NEGATIVE samples (where model should NOT trade)
|
||||
# These are candles before and after the signal
|
||||
@@ -382,14 +382,14 @@ class RealTrainingAdapter:
|
||||
logger.debug(f" ➕ Added {len(negative_samples)} negative samples (±{negative_samples_window} candles)")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error preparing test case {i+1}: {e}")
|
||||
logger.error(f" Error preparing test case {i+1}: {e}")
|
||||
|
||||
total_entry = sum(1 for s in training_data if s.get('label') == 'ENTRY')
|
||||
total_hold = sum(1 for s in training_data if s.get('label') == 'HOLD')
|
||||
total_exit = sum(1 for s in training_data if s.get('label') == 'EXIT')
|
||||
total_no_trade = sum(1 for s in training_data if s.get('label') == 'NO_TRADE')
|
||||
|
||||
logger.info(f"✅ Prepared {len(training_data)} training samples from {len(test_cases)} test cases")
|
||||
logger.info(f" Prepared {len(training_data)} training samples from {len(test_cases)} test cases")
|
||||
logger.info(f" ENTRY samples: {total_entry}")
|
||||
logger.info(f" HOLD samples: {total_hold}")
|
||||
logger.info(f" EXIT samples: {total_exit}")
|
||||
@@ -399,7 +399,7 @@ class RealTrainingAdapter:
|
||||
logger.info(f" Ratio: 1:{total_no_trade/total_entry:.1f} (entry:no_trade)")
|
||||
|
||||
if len(training_data) < len(test_cases):
|
||||
logger.warning(f"⚠️ Skipped {len(test_cases) - len(training_data)} test cases due to missing data")
|
||||
logger.warning(f" Skipped {len(test_cases) - len(training_data)} test cases due to missing data")
|
||||
|
||||
return training_data
|
||||
|
||||
@@ -1048,7 +1048,7 @@ class RealTrainingAdapter:
|
||||
if not converted_batches:
|
||||
raise Exception("No valid training batches after conversion")
|
||||
|
||||
logger.info(f" ✅ Converted {len(training_data)} samples to {len(converted_batches)} training batches")
|
||||
logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches")
|
||||
|
||||
# Train using train_step for each batch
|
||||
for epoch in range(session.total_epochs):
|
||||
|
||||
@@ -196,14 +196,14 @@ class AnnotationDashboard:
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
if attempt > 0:
|
||||
logger.info(f"🔄 Retry attempt {attempt + 1}/{max_retries} for model loading...")
|
||||
logger.info(f" Retry attempt {attempt + 1}/{max_retries} for model loading...")
|
||||
time.sleep(retry_delay)
|
||||
else:
|
||||
logger.info("🔄 Starting async model loading...")
|
||||
logger.info(" Starting async model loading...")
|
||||
|
||||
# Check if TradingOrchestrator is available
|
||||
if not TradingOrchestrator:
|
||||
logger.error("❌ TradingOrchestrator class not available")
|
||||
logger.error(" TradingOrchestrator class not available")
|
||||
self.models_loading = False
|
||||
self.available_models = []
|
||||
return
|
||||
@@ -214,48 +214,48 @@ class AnnotationDashboard:
|
||||
data_provider=self.data_provider,
|
||||
enhanced_rl_training=True
|
||||
)
|
||||
logger.info(" ✅ Orchestrator created")
|
||||
logger.info(" Orchestrator created")
|
||||
|
||||
# Initialize ML models
|
||||
logger.info(" Initializing ML models...")
|
||||
self.orchestrator._initialize_ml_models()
|
||||
logger.info(" ✅ ML models initialized")
|
||||
logger.info(" ML models initialized")
|
||||
|
||||
# Update training adapter with orchestrator
|
||||
self.training_adapter.orchestrator = self.orchestrator
|
||||
logger.info(" ✅ Training adapter updated")
|
||||
logger.info(" Training adapter updated")
|
||||
|
||||
# Get available models from orchestrator
|
||||
available = []
|
||||
if hasattr(self.orchestrator, 'rl_agent') and self.orchestrator.rl_agent:
|
||||
available.append('DQN')
|
||||
logger.info(" ✅ DQN model available")
|
||||
logger.info(" DQN model available")
|
||||
if hasattr(self.orchestrator, 'cnn_model') and self.orchestrator.cnn_model:
|
||||
available.append('CNN')
|
||||
logger.info(" ✅ CNN model available")
|
||||
logger.info(" CNN model available")
|
||||
if hasattr(self.orchestrator, 'transformer_model') and self.orchestrator.transformer_model:
|
||||
available.append('Transformer')
|
||||
logger.info(" ✅ Transformer model available")
|
||||
logger.info(" Transformer model available")
|
||||
|
||||
self.available_models = available
|
||||
|
||||
if available:
|
||||
logger.info(f"✅ Models loaded successfully: {', '.join(available)}")
|
||||
logger.info(f" Models loaded successfully: {', '.join(available)}")
|
||||
else:
|
||||
logger.warning("⚠️ No models were initialized (this might be normal if models aren't configured)")
|
||||
logger.warning(" No models were initialized (this might be normal if models aren't configured)")
|
||||
|
||||
self.models_loading = False
|
||||
logger.info("✅ Async model loading complete")
|
||||
logger.info(" Async model loading complete")
|
||||
return # Success - exit retry loop
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error loading models (attempt {attempt + 1}/{max_retries}): {e}")
|
||||
logger.error(f" Error loading models (attempt {attempt + 1}/{max_retries}): {e}")
|
||||
import traceback
|
||||
logger.error(f"Traceback:\n{traceback.format_exc()}")
|
||||
|
||||
if attempt == max_retries - 1:
|
||||
# Final attempt failed
|
||||
logger.error(f"❌ Model loading failed after {max_retries} attempts")
|
||||
logger.error(f" Model loading failed after {max_retries} attempts")
|
||||
self.models_loading = False
|
||||
self.available_models = []
|
||||
else:
|
||||
@@ -264,7 +264,7 @@ class AnnotationDashboard:
|
||||
# Start loading in background thread
|
||||
thread = threading.Thread(target=load_models, daemon=True, name="ModelLoader")
|
||||
thread.start()
|
||||
logger.info(f"🚀 Model loading started in background thread (ID: {thread.ident}, Name: {thread.name})")
|
||||
logger.info(f" Model loading started in background thread (ID: {thread.ident}, Name: {thread.name})")
|
||||
logger.info(" UI remains responsive while models load...")
|
||||
logger.info(" Will retry up to 3 times if loading fails")
|
||||
|
||||
@@ -284,7 +284,7 @@ class AnnotationDashboard:
|
||||
)
|
||||
|
||||
if success:
|
||||
logger.info("✅ ANNOTATE: Unified storage enabled for real-time data")
|
||||
logger.info(" ANNOTATE: Unified storage enabled for real-time data")
|
||||
|
||||
# Get statistics
|
||||
stats = self.data_provider.get_unified_storage_stats()
|
||||
@@ -293,7 +293,7 @@ class AnnotationDashboard:
|
||||
logger.info(" Historical data access: <100ms")
|
||||
logger.info(" Annotation data: Available at any timestamp")
|
||||
else:
|
||||
logger.warning("⚠️ ANNOTATE: Unified storage not available, using cached data only")
|
||||
logger.warning(" ANNOTATE: Unified storage not available, using cached data only")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"ANNOTATE: Could not enable unified storage: {e}")
|
||||
@@ -312,7 +312,7 @@ class AnnotationDashboard:
|
||||
# Wait for app to fully start
|
||||
time.sleep(5)
|
||||
|
||||
logger.info("🔄 Starting one-time background data refresh (fetching only recent missing data)")
|
||||
logger.info(" Starting one-time background data refresh (fetching only recent missing data)")
|
||||
|
||||
# Disable startup mode to fetch fresh data
|
||||
self.data_loader.disable_startup_mode()
|
||||
@@ -321,7 +321,7 @@ class AnnotationDashboard:
|
||||
logger.info("Using on-demand refresh for recent data")
|
||||
self.data_provider.refresh_data_on_demand()
|
||||
|
||||
logger.info("✅ One-time background data refresh completed")
|
||||
logger.info(" One-time background data refresh completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in background data refresh: {e}")
|
||||
@@ -488,9 +488,9 @@ class AnnotationDashboard:
|
||||
<h1 class="text-center">📝 ANNOTATE - Manual Trade Annotation UI</h1>
|
||||
<div class="alert alert-info">
|
||||
<h4>System Status</h4>
|
||||
<p>✅ Annotation Manager: Active</p>
|
||||
<p>⚠️ Data Provider: {'Available' if self.data_provider else 'Not Available (Standalone Mode)'}</p>
|
||||
<p>⚠️ Trading Orchestrator: {'Available' if self.orchestrator else 'Not Available (Standalone Mode)'}</p>
|
||||
<p> Annotation Manager: Active</p>
|
||||
<p> Data Provider: {'Available' if self.data_provider else 'Not Available (Standalone Mode)'}</p>
|
||||
<p> Trading Orchestrator: {'Available' if self.orchestrator else 'Not Available (Standalone Mode)'}</p>
|
||||
</div>
|
||||
<div class="row">
|
||||
<div class="col-md-6">
|
||||
@@ -537,7 +537,7 @@ class AnnotationDashboard:
|
||||
'error': {'code': 'INVALID_REQUEST', 'message': 'Missing timeframe or timestamps'}
|
||||
})
|
||||
|
||||
logger.info(f"🔄 Recalculating pivots for {symbol} {timeframe} with {len(timestamps)} candles")
|
||||
logger.info(f" Recalculating pivots for {symbol} {timeframe} with {len(timestamps)} candles")
|
||||
|
||||
# Convert to DataFrame
|
||||
df = pd.DataFrame({
|
||||
@@ -552,7 +552,7 @@ class AnnotationDashboard:
|
||||
# Recalculate pivot markers
|
||||
pivot_markers = self._get_pivot_markers_for_timeframe(symbol, timeframe, df)
|
||||
|
||||
logger.info(f" ✅ Recalculated {len(pivot_markers)} pivot candles")
|
||||
logger.info(f" Recalculated {len(pivot_markers)} pivot candles")
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
@@ -614,7 +614,7 @@ class AnnotationDashboard:
|
||||
)
|
||||
|
||||
if df is not None and not df.empty:
|
||||
logger.info(f" ✅ {timeframe}: {len(df)} candles ({df.index[0]} to {df.index[-1]})")
|
||||
logger.info(f" {timeframe}: {len(df)} candles ({df.index[0]} to {df.index[-1]})")
|
||||
|
||||
# Get pivot points for this timeframe
|
||||
pivot_markers = self._get_pivot_markers_for_timeframe(symbol, timeframe, df)
|
||||
@@ -630,7 +630,7 @@ class AnnotationDashboard:
|
||||
'pivot_markers': pivot_markers # Optional: only present if pivots exist
|
||||
}
|
||||
else:
|
||||
logger.warning(f" ❌ {timeframe}: No data returned")
|
||||
logger.warning(f" {timeframe}: No data returned")
|
||||
|
||||
# Get pivot bounds for the symbol
|
||||
pivot_bounds = None
|
||||
|
||||
@@ -1215,10 +1215,10 @@ class ChartManager {
|
||||
// Merge with existing data
|
||||
this.mergeChartData(timeframe, newData, direction);
|
||||
|
||||
console.log(`✅ Loaded ${newData.timestamps.length} new candles for ${timeframe}`);
|
||||
console.log(` Loaded ${newData.timestamps.length} new candles for ${timeframe}`);
|
||||
window.showSuccess(`Loaded ${newData.timestamps.length} more candles`);
|
||||
} else {
|
||||
console.warn(`❌ No more data available for ${timeframe} ${direction}`);
|
||||
console.warn(` No more data available for ${timeframe} ${direction}`);
|
||||
console.warn('Full result:', result);
|
||||
window.showWarning('No more historical data available');
|
||||
}
|
||||
@@ -1312,7 +1312,7 @@ class ChartManager {
|
||||
*/
|
||||
async recalculatePivots(timeframe, data) {
|
||||
try {
|
||||
console.log(`🔄 Recalculating pivots for ${timeframe} with ${data.timestamps.length} candles...`);
|
||||
console.log(` Recalculating pivots for ${timeframe} with ${data.timestamps.length} candles...`);
|
||||
|
||||
const response = await fetch('/api/recalculate-pivots', {
|
||||
method: 'POST',
|
||||
@@ -1338,7 +1338,7 @@ class ChartManager {
|
||||
const chart = this.charts[timeframe];
|
||||
if (chart && chart.data) {
|
||||
chart.data.pivot_markers = result.pivot_markers;
|
||||
console.log(`✅ Pivots recalculated: ${Object.keys(result.pivot_markers).length} pivot candles`);
|
||||
console.log(` Pivots recalculated: ${Object.keys(result.pivot_markers).length} pivot candles`);
|
||||
|
||||
// Redraw the chart with updated pivots
|
||||
this.redrawChartWithPivots(timeframe, chart.data);
|
||||
|
||||
@@ -113,7 +113,7 @@
|
||||
|
||||
if (data.loading) {
|
||||
// Models still loading - show loading message and poll
|
||||
modelSelect.innerHTML = '<option value="">🔄 Loading models...</option>';
|
||||
modelSelect.innerHTML = '<option value=""> Loading models...</option>';
|
||||
|
||||
// Start polling if not already polling
|
||||
if (!modelLoadingPollInterval) {
|
||||
@@ -132,7 +132,7 @@
|
||||
if (data.success && data.models.length > 0) {
|
||||
// Show success notification
|
||||
if (window.showSuccess) {
|
||||
window.showSuccess(`✅ ${data.models.length} models loaded and ready for training`);
|
||||
window.showSuccess(` ${data.models.length} models loaded and ready for training`);
|
||||
}
|
||||
|
||||
data.models.forEach(model => {
|
||||
@@ -142,7 +142,7 @@
|
||||
modelSelect.appendChild(option);
|
||||
});
|
||||
|
||||
console.log(`✅ Models loaded: ${data.models.join(', ')}`);
|
||||
console.log(` Models loaded: ${data.models.join(', ')}`);
|
||||
} else {
|
||||
const option = document.createElement('option');
|
||||
option.value = '';
|
||||
@@ -157,12 +157,12 @@
|
||||
|
||||
// Don't stop polling on network errors - keep trying
|
||||
if (!modelLoadingPollInterval) {
|
||||
modelSelect.innerHTML = '<option value="">⚠️ Connection error, retrying...</option>';
|
||||
modelSelect.innerHTML = '<option value=""> Connection error, retrying...</option>';
|
||||
// Start polling to retry
|
||||
modelLoadingPollInterval = setInterval(loadAvailableModels, 3000); // Poll every 3 seconds
|
||||
} else {
|
||||
// Already polling, just update the message
|
||||
modelSelect.innerHTML = '<option value="">🔄 Retrying...</option>';
|
||||
modelSelect.innerHTML = '<option value=""> Retrying...</option>';
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
|
||||
## Changes Made
|
||||
|
||||
### Phase 1: Removed All Mock/Synthetic Data ✅
|
||||
### Phase 1: Removed All Mock/Synthetic Data
|
||||
|
||||
**Policy Enforcement**:
|
||||
- Added "NO SYNTHETIC DATA" policy warnings to all core modules
|
||||
@@ -32,7 +32,7 @@
|
||||
|
||||
---
|
||||
|
||||
### Phase 2: Removed Unused Dashboard Implementations ✅
|
||||
### Phase 2: Removed Unused Dashboard Implementations
|
||||
|
||||
**Files Deleted**:
|
||||
- `web/templated_dashboard.py` (1000+ lines)
|
||||
@@ -49,7 +49,7 @@
|
||||
|
||||
---
|
||||
|
||||
### Phase 3: Consolidated Training Runners ✅
|
||||
### Phase 3: Consolidated Training Runners
|
||||
|
||||
**NEW FILE CREATED**:
|
||||
- `training_runner.py` - Unified training system supporting:
|
||||
@@ -71,7 +71,7 @@
|
||||
|
||||
---
|
||||
|
||||
### Phase 4: Consolidated Main Entry Points ✅
|
||||
### Phase 4: Consolidated Main Entry Points
|
||||
|
||||
**NEW FILES CREATED**:
|
||||
1. `main_dashboard.py` - Real-time dashboard & live training
|
||||
@@ -95,7 +95,7 @@
|
||||
|
||||
---
|
||||
|
||||
### Phase 5: Fixed Broken Imports & Removed Unused Files ✅
|
||||
### Phase 5: Fixed Broken Imports & Removed Unused Files
|
||||
|
||||
**Files Deleted**:
|
||||
1. `tests/test_training_status.py` - Broken import (web.old_archived)
|
||||
@@ -121,7 +121,7 @@
|
||||
|
||||
---
|
||||
|
||||
### Phase 6: Removed Unused Components ✅
|
||||
### Phase 6: Removed Unused Components
|
||||
|
||||
**Files Deleted**:
|
||||
- `NN/training/integrate_checkpoint_management.py` - Redundant with model_manager.py
|
||||
@@ -134,7 +134,7 @@
|
||||
|
||||
---
|
||||
|
||||
### Phase 7: Documentation Updated ✅
|
||||
### Phase 7: Documentation Updated
|
||||
|
||||
**Files Modified**:
|
||||
- `readme.md` - Updated Quick Start section with new entry points
|
||||
@@ -200,12 +200,12 @@ python training_runner.py --mode [realtime|backtest]
|
||||
|
||||
## Key Improvements
|
||||
|
||||
✅ **ZERO Mock/Synthetic Data** - All synthetic data generation removed
|
||||
✅ **Single Training System** - 6 duplicate runners → 1 unified
|
||||
✅ **Clear Entry Points** - 5 entry points → 2 focused
|
||||
✅ **Cleaner Codebase** - 40+ unnecessary files removed
|
||||
✅ **Better Maintainability** - Less duplication, clearer structure
|
||||
✅ **No Broken Imports** - All dead code references removed
|
||||
**ZERO Mock/Synthetic Data** - All synthetic data generation removed
|
||||
**Single Training System** - 6 duplicate runners → 1 unified
|
||||
**Clear Entry Points** - 5 entry points → 2 focused
|
||||
**Cleaner Codebase** - 40+ unnecessary files removed
|
||||
**Better Maintainability** - Less duplication, clearer structure
|
||||
**No Broken Imports** - All dead code references removed
|
||||
|
||||
---
|
||||
|
||||
@@ -268,9 +268,9 @@ python main_backtest.py --start 2024-01-01 --end 2024-12-31
|
||||
|
||||
## Next Steps
|
||||
|
||||
1. ✅ Test `main_dashboard.py` for basic functionality
|
||||
2. ✅ Test `main_backtest.py` with small date range
|
||||
3. ✅ Test `training_runner.py` in both modes
|
||||
1. Test `main_dashboard.py` for basic functionality
|
||||
2. Test `main_backtest.py` with small date range
|
||||
3. Test `training_runner.py` in both modes
|
||||
4. Update `.vscode/launch.json` configurations
|
||||
5. Run integration tests
|
||||
6. Update any remaining documentation
|
||||
|
||||
@@ -27,7 +27,7 @@ if os.path.exists(static_path):
|
||||
app.mount("/static", StaticFiles(directory=static_path), name="static")
|
||||
# Serve index.html at root for dashboard
|
||||
app.mount("/", StaticFiles(directory=static_path, html=True), name="dashboard")
|
||||
🚀 To access the dashboard:
|
||||
To access the dashboard:
|
||||
Start the application: python COBY/main.py --debug
|
||||
Open browser: Navigate to http://localhost:8080/
|
||||
API health check: http://localhost:8080/health
|
||||
@@ -77,7 +77,7 @@ COBY/
|
||||
└── README.md
|
||||
```
|
||||
|
||||
## 🚀 Features
|
||||
## Features
|
||||
|
||||
- **Multi-Exchange Support**: Connect to 10+ major cryptocurrency exchanges
|
||||
- **Real-Time Data**: High-frequency order book and trade data collection
|
||||
|
||||
@@ -15,7 +15,7 @@ This directory contains Docker Compose configurations and scripts for deploying
|
||||
- At least 4GB RAM available for containers
|
||||
- 50GB+ disk space for data storage
|
||||
|
||||
## 🚀 Quick Start
|
||||
## Quick Start
|
||||
|
||||
1. **Copy environment file**:
|
||||
```bash
|
||||
@@ -264,7 +264,7 @@ For issues related to:
|
||||
- Redis: Check [Redis docs](https://redis.io/documentation)
|
||||
- Docker: Check [Docker docs](https://docs.docker.com/)
|
||||
|
||||
## 🔄 Updates
|
||||
## Updates
|
||||
|
||||
This infrastructure supports:
|
||||
- Rolling updates with zero downtime
|
||||
|
||||
@@ -32,9 +32,9 @@ docker exec market_data_timescaledb pg_dump \
|
||||
> "$BACKUP_DIR/timescaledb_backup_$TIMESTAMP.dump"
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ TimescaleDB backup completed: timescaledb_backup_$TIMESTAMP.dump"
|
||||
echo " TimescaleDB backup completed: timescaledb_backup_$TIMESTAMP.dump"
|
||||
else
|
||||
echo "❌ TimescaleDB backup failed"
|
||||
echo " TimescaleDB backup failed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -52,9 +52,9 @@ sleep 5
|
||||
docker cp market_data_redis:/data/redis_backup_$TIMESTAMP.rdb "$BACKUP_DIR/"
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ Redis backup completed: redis_backup_$TIMESTAMP.rdb"
|
||||
echo " Redis backup completed: redis_backup_$TIMESTAMP.rdb"
|
||||
else
|
||||
echo "❌ Redis backup failed"
|
||||
echo " Redis backup failed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -88,7 +88,7 @@ rm "$BACKUP_DIR/timescaledb_backup_$TIMESTAMP.dump"
|
||||
rm "$BACKUP_DIR/redis_backup_$TIMESTAMP.rdb"
|
||||
rm "$BACKUP_DIR/backup_$TIMESTAMP.info"
|
||||
|
||||
echo "✅ Compressed backup created: market_data_backup_$TIMESTAMP.tar.gz"
|
||||
echo " Compressed backup created: market_data_backup_$TIMESTAMP.tar.gz"
|
||||
|
||||
# Clean up old backups
|
||||
echo "🧹 Cleaning up old backups (older than $RETENTION_DAYS days)..."
|
||||
@@ -102,7 +102,7 @@ echo " File: market_data_backup_$TIMESTAMP.tar.gz"
|
||||
echo " Size: $BACKUP_SIZE"
|
||||
echo " Location: $BACKUP_DIR"
|
||||
echo ""
|
||||
echo "🔄 To restore from this backup:"
|
||||
echo " To restore from this backup:"
|
||||
echo " ./restore.sh market_data_backup_$TIMESTAMP.tar.gz"
|
||||
echo ""
|
||||
echo "✅ Backup process completed successfully!"
|
||||
echo " Backup process completed successfully!"
|
||||
@@ -14,7 +14,7 @@ echo "📡 Testing connection to TimescaleDB..."
|
||||
PGPASSWORD="market_data_secure_pass_2024" psql -h 192.168.0.10 -p 5432 -U market_user -d market_data -c "SELECT version();"
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ Connection successful!"
|
||||
echo " Connection successful!"
|
||||
|
||||
echo "🏗️ Creating database schema..."
|
||||
|
||||
@@ -22,16 +22,16 @@ if [ $? -eq 0 ]; then
|
||||
PGPASSWORD="market_data_secure_pass_2024" psql -h 192.168.0.10 -p 5432 -U market_user -d market_data -f ../docker/init-scripts/01-init-timescaledb.sql
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ Database schema initialized successfully!"
|
||||
echo " Database schema initialized successfully!"
|
||||
|
||||
echo "📊 Verifying tables..."
|
||||
PGPASSWORD="market_data_secure_pass_2024" psql -h 192.168.0.10 -p 5432 -U market_user -d market_data -c "\dt market_data.*"
|
||||
|
||||
else
|
||||
echo "❌ Schema initialization failed"
|
||||
echo " Schema initialization failed"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "❌ Cannot connect to database"
|
||||
echo " Cannot connect to database"
|
||||
exit 1
|
||||
fi
|
||||
@@ -7,7 +7,7 @@ set -e
|
||||
|
||||
# Check if backup file is provided
|
||||
if [ $# -eq 0 ]; then
|
||||
echo "❌ Usage: $0 <backup_file.tar.gz>"
|
||||
echo " Usage: $0 <backup_file.tar.gz>"
|
||||
echo "Available backups:"
|
||||
ls -la ./backups/market_data_backup_*.tar.gz 2>/dev/null || echo "No backups found"
|
||||
exit 1
|
||||
@@ -22,12 +22,12 @@ if [ -f .env ]; then
|
||||
source .env
|
||||
fi
|
||||
|
||||
echo "🔄 Starting restore process..."
|
||||
echo " Starting restore process..."
|
||||
echo "📁 Backup file: $BACKUP_FILE"
|
||||
|
||||
# Check if backup file exists
|
||||
if [ ! -f "$BACKUP_FILE" ]; then
|
||||
echo "❌ Backup file not found: $BACKUP_FILE"
|
||||
echo " Backup file not found: $BACKUP_FILE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -44,7 +44,7 @@ REDIS_BACKUP=$(find "$RESTORE_DIR" -name "redis_backup_*.rdb" | head -1)
|
||||
BACKUP_INFO=$(find "$RESTORE_DIR" -name "backup_*.info" | head -1)
|
||||
|
||||
if [ -z "$TIMESCALE_BACKUP" ] || [ -z "$REDIS_BACKUP" ]; then
|
||||
echo "❌ Invalid backup file structure"
|
||||
echo " Invalid backup file structure"
|
||||
rm -rf "$RESTORE_DIR"
|
||||
exit 1
|
||||
fi
|
||||
@@ -57,10 +57,10 @@ if [ -f "$BACKUP_INFO" ]; then
|
||||
fi
|
||||
|
||||
# Confirm restore
|
||||
read -p "⚠️ This will replace all existing data. Continue? (y/N): " -n 1 -r
|
||||
read -p " This will replace all existing data. Continue? (y/N): " -n 1 -r
|
||||
echo
|
||||
if [[ ! $REPLY =~ ^[Yy]$ ]]; then
|
||||
echo "❌ Restore cancelled"
|
||||
echo " Restore cancelled"
|
||||
rm -rf "$RESTORE_DIR"
|
||||
exit 1
|
||||
fi
|
||||
@@ -85,7 +85,7 @@ sleep 30
|
||||
|
||||
# Check if TimescaleDB is ready
|
||||
if ! docker exec market_data_timescaledb pg_isready -U market_user -d market_data; then
|
||||
echo "❌ TimescaleDB is not ready"
|
||||
echo " TimescaleDB is not ready"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -105,9 +105,9 @@ docker exec market_data_timescaledb pg_restore \
|
||||
/tmp/restore.dump
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "✅ TimescaleDB restore completed"
|
||||
echo " TimescaleDB restore completed"
|
||||
else
|
||||
echo "❌ TimescaleDB restore failed"
|
||||
echo " TimescaleDB restore failed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -136,7 +136,7 @@ echo "🔍 Verifying restore..."
|
||||
|
||||
# Check TimescaleDB
|
||||
if docker exec market_data_timescaledb pg_isready -U market_user -d market_data; then
|
||||
echo "✅ TimescaleDB is ready"
|
||||
echo " TimescaleDB is ready"
|
||||
|
||||
# Show table counts
|
||||
echo "📊 Database table counts:"
|
||||
@@ -150,19 +150,19 @@ if docker exec market_data_timescaledb pg_isready -U market_user -d market_data;
|
||||
ORDER BY tablename;
|
||||
"
|
||||
else
|
||||
echo "❌ TimescaleDB verification failed"
|
||||
echo " TimescaleDB verification failed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check Redis
|
||||
if docker exec market_data_redis redis-cli -a "$REDIS_PASSWORD" ping | grep -q PONG; then
|
||||
echo "✅ Redis is ready"
|
||||
echo " Redis is ready"
|
||||
|
||||
# Show Redis info
|
||||
echo "📦 Redis database info:"
|
||||
docker exec market_data_redis redis-cli -a "$REDIS_PASSWORD" INFO keyspace
|
||||
else
|
||||
echo "❌ Redis verification failed"
|
||||
echo " Redis verification failed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -178,7 +178,7 @@ echo " Source: $BACKUP_FILE"
|
||||
echo " Timestamp: $TIMESTAMP"
|
||||
echo " Safety backup: ./backups/pre_restore_$TIMESTAMP/"
|
||||
echo ""
|
||||
echo "⚠️ If you encounter any issues, you can restore the safety backup:"
|
||||
echo " If you encounter any issues, you can restore the safety backup:"
|
||||
echo " docker-compose -f timescaledb-compose.yml down"
|
||||
echo " docker volume rm market_data_timescale_data market_data_redis_data"
|
||||
echo " docker volume create market_data_timescale_data"
|
||||
|
||||
@@ -50,22 +50,22 @@ class BinanceExample:
|
||||
|
||||
def on_status_changed(self, exchange, status):
|
||||
"""Handle status changes"""
|
||||
logger.info(f"🔄 {exchange} status changed to: {status.value}")
|
||||
logger.info(f" {exchange} status changed to: {status.value}")
|
||||
|
||||
async def run_example(self):
|
||||
"""Run the example"""
|
||||
try:
|
||||
logger.info("🚀 Starting Binance connector example")
|
||||
logger.info(" Starting Binance connector example")
|
||||
|
||||
# Connect to Binance
|
||||
logger.info("🔌 Connecting to Binance...")
|
||||
connected = await self.connector.connect()
|
||||
|
||||
if not connected:
|
||||
logger.error("❌ Failed to connect to Binance")
|
||||
logger.error(" Failed to connect to Binance")
|
||||
return
|
||||
|
||||
logger.info("✅ Connected to Binance successfully")
|
||||
logger.info(" Connected to Binance successfully")
|
||||
|
||||
# Get available symbols
|
||||
logger.info("📋 Getting available symbols...")
|
||||
@@ -94,12 +94,12 @@ class BinanceExample:
|
||||
if 'BTCUSDT' in symbols:
|
||||
await self.connector.subscribe_orderbook('BTCUSDT')
|
||||
await self.connector.subscribe_trades('BTCUSDT')
|
||||
logger.info("✅ Subscribed to BTCUSDT order book and trades")
|
||||
logger.info(" Subscribed to BTCUSDT order book and trades")
|
||||
|
||||
# Subscribe to ETH order book
|
||||
if 'ETHUSDT' in symbols:
|
||||
await self.connector.subscribe_orderbook('ETHUSDT')
|
||||
logger.info("✅ Subscribed to ETHUSDT order book")
|
||||
logger.info(" Subscribed to ETHUSDT order book")
|
||||
|
||||
# Let it run for a while
|
||||
logger.info("⏳ Collecting data for 30 seconds...")
|
||||
@@ -111,7 +111,7 @@ class BinanceExample:
|
||||
logger.info(f" 📊 Order books received: {self.orderbook_count}")
|
||||
logger.info(f" 💰 Trades received: {self.trade_count}")
|
||||
logger.info(f" 📡 Total messages: {stats['message_count']}")
|
||||
logger.info(f" ❌ Errors: {stats['error_count']}")
|
||||
logger.info(f" Errors: {stats['error_count']}")
|
||||
logger.info(f" 🔗 Active streams: {stats['active_streams']}")
|
||||
logger.info(f" 📋 Subscriptions: {list(stats['subscriptions'].keys())}")
|
||||
|
||||
@@ -126,12 +126,12 @@ class BinanceExample:
|
||||
await self.connector.unsubscribe_orderbook('ETHUSDT')
|
||||
|
||||
await self.connector.disconnect()
|
||||
logger.info("✅ Disconnected successfully")
|
||||
logger.info(" Disconnected successfully")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("⏹️ Interrupted by user")
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Example failed: {e}")
|
||||
logger.error(f" Example failed: {e}")
|
||||
finally:
|
||||
# Ensure cleanup
|
||||
try:
|
||||
@@ -164,5 +164,5 @@ if __name__ == "__main__":
|
||||
except KeyboardInterrupt:
|
||||
print("\n👋 Example stopped by user")
|
||||
except Exception as e:
|
||||
print(f"\n❌ Example failed: {e}")
|
||||
print(f"\n Example failed: {e}")
|
||||
sys.exit(1)
|
||||
@@ -78,11 +78,11 @@ class MultiExchangeManager:
|
||||
# Report results
|
||||
for i, (name, result) in enumerate(zip(self.connectors.keys(), results)):
|
||||
if isinstance(result, Exception):
|
||||
logger.error(f"❌ Failed to connect to {name}: {result}")
|
||||
logger.error(f" Failed to connect to {name}: {result}")
|
||||
elif result:
|
||||
logger.info(f"✅ Connected to {name}")
|
||||
logger.info(f" Connected to {name}")
|
||||
else:
|
||||
logger.warning(f"⚠️ Connection to {name} returned False")
|
||||
logger.warning(f" Connection to {name} returned False")
|
||||
|
||||
async def _connect_exchange(self, name: str, connector) -> bool:
|
||||
"""Connect to a single exchange."""
|
||||
@@ -111,7 +111,7 @@ class MultiExchangeManager:
|
||||
# Small delay between subscriptions
|
||||
await asyncio.sleep(0.5)
|
||||
else:
|
||||
logger.warning(f"⚠️ {name} not connected, skipping {symbol}")
|
||||
logger.warning(f" {name} not connected, skipping {symbol}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error subscribing to {symbol} on {name}: {e}")
|
||||
@@ -152,7 +152,7 @@ class MultiExchangeManager:
|
||||
for name, connector in self.connectors.items():
|
||||
try:
|
||||
await connector.disconnect()
|
||||
logger.info(f"✅ Disconnected from {name}")
|
||||
logger.info(f" Disconnected from {name}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error disconnecting from {name}: {e}")
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ def check_health():
|
||||
health_data = response.json()
|
||||
|
||||
# Basic health check passed
|
||||
print(f"✅ API Health Check: PASSED")
|
||||
print(f" API Health Check: PASSED")
|
||||
print(f" Status: {health_data.get('status', 'unknown')}")
|
||||
print(f" Timestamp: {health_data.get('timestamp', 'unknown')}")
|
||||
|
||||
@@ -30,30 +30,30 @@ def check_health():
|
||||
|
||||
for component, status in components.items():
|
||||
if status.get('healthy', False):
|
||||
print(f"✅ {component}: HEALTHY")
|
||||
print(f" {component}: HEALTHY")
|
||||
else:
|
||||
print(f"❌ {component}: UNHEALTHY - {status.get('error', 'unknown error')}")
|
||||
print(f" {component}: UNHEALTHY - {status.get('error', 'unknown error')}")
|
||||
all_healthy = False
|
||||
|
||||
if all_healthy:
|
||||
print("\n🎉 Overall Health: HEALTHY")
|
||||
return 0
|
||||
else:
|
||||
print("\n⚠️ Overall Health: DEGRADED")
|
||||
print("\n Overall Health: DEGRADED")
|
||||
return 1
|
||||
|
||||
else:
|
||||
print(f"❌ API Health Check: FAILED (HTTP {response.status_code})")
|
||||
print(f" API Health Check: FAILED (HTTP {response.status_code})")
|
||||
return 1
|
||||
|
||||
except requests.exceptions.ConnectionError:
|
||||
print("❌ API Health Check: FAILED (Connection refused)")
|
||||
print(" API Health Check: FAILED (Connection refused)")
|
||||
return 1
|
||||
except requests.exceptions.Timeout:
|
||||
print("❌ API Health Check: FAILED (Timeout)")
|
||||
print(" API Health Check: FAILED (Timeout)")
|
||||
return 1
|
||||
except Exception as e:
|
||||
print(f"❌ API Health Check: FAILED ({str(e)})")
|
||||
print(f" API Health Check: FAILED ({str(e)})")
|
||||
return 1
|
||||
|
||||
def check_websocket():
|
||||
@@ -67,14 +67,14 @@ def check_websocket():
|
||||
sock.close()
|
||||
|
||||
if result == 0:
|
||||
print("✅ WebSocket Server: ACCESSIBLE")
|
||||
print(" WebSocket Server: ACCESSIBLE")
|
||||
return True
|
||||
else:
|
||||
print("❌ WebSocket Server: NOT ACCESSIBLE")
|
||||
print(" WebSocket Server: NOT ACCESSIBLE")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ WebSocket Server: ERROR ({str(e)})")
|
||||
print(f" WebSocket Server: ERROR ({str(e)})")
|
||||
return False
|
||||
|
||||
def main():
|
||||
@@ -94,10 +94,10 @@ def main():
|
||||
print("🎉 COBY System: FULLY HEALTHY")
|
||||
return 0
|
||||
elif api_healthy:
|
||||
print("⚠️ COBY System: PARTIALLY HEALTHY (API only)")
|
||||
print(" COBY System: PARTIALLY HEALTHY (API only)")
|
||||
return 1
|
||||
else:
|
||||
print("❌ COBY System: UNHEALTHY")
|
||||
print(" COBY System: UNHEALTHY")
|
||||
return 1
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -148,7 +148,7 @@ async def main():
|
||||
print("🎉 All tests passed! COBY system should work correctly.")
|
||||
return 0
|
||||
else:
|
||||
print("❌ Some tests failed. Please check the issues above.")
|
||||
print(" Some tests failed. Please check the issues above.")
|
||||
return 1
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -33,9 +33,9 @@ async def test_database_connection():
|
||||
# Test health check
|
||||
is_healthy = await manager.health_check()
|
||||
if is_healthy:
|
||||
logger.info("✅ Database connection: HEALTHY")
|
||||
logger.info(" Database connection: HEALTHY")
|
||||
else:
|
||||
logger.error("❌ Database connection: UNHEALTHY")
|
||||
logger.error(" Database connection: UNHEALTHY")
|
||||
return False
|
||||
|
||||
# Test storage stats
|
||||
@@ -49,7 +49,7 @@ async def test_database_connection():
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Database test failed: {e}")
|
||||
logger.error(f" Database test failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
@@ -80,17 +80,17 @@ async def test_data_storage():
|
||||
# Test storing order book
|
||||
result = await manager.store_orderbook(test_orderbook)
|
||||
if result:
|
||||
logger.info("✅ Order book storage: SUCCESS")
|
||||
logger.info(" Order book storage: SUCCESS")
|
||||
else:
|
||||
logger.error("❌ Order book storage: FAILED")
|
||||
logger.error(" Order book storage: FAILED")
|
||||
return False
|
||||
|
||||
# Test retrieving order book
|
||||
retrieved = await manager.get_latest_orderbook("BTCUSDT", "test_exchange")
|
||||
if retrieved:
|
||||
logger.info(f"✅ Order book retrieval: SUCCESS (mid_price: {retrieved.mid_price})")
|
||||
logger.info(f" Order book retrieval: SUCCESS (mid_price: {retrieved.mid_price})")
|
||||
else:
|
||||
logger.error("❌ Order book retrieval: FAILED")
|
||||
logger.error(" Order book retrieval: FAILED")
|
||||
return False
|
||||
|
||||
# Create test trade
|
||||
@@ -107,16 +107,16 @@ async def test_data_storage():
|
||||
# Test storing trade
|
||||
result = await manager.store_trade(test_trade)
|
||||
if result:
|
||||
logger.info("✅ Trade storage: SUCCESS")
|
||||
logger.info(" Trade storage: SUCCESS")
|
||||
else:
|
||||
logger.error("❌ Trade storage: FAILED")
|
||||
logger.error(" Trade storage: FAILED")
|
||||
return False
|
||||
|
||||
await manager.close()
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Data storage test failed: {e}")
|
||||
logger.error(f" Data storage test failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
@@ -144,9 +144,9 @@ async def test_batch_operations():
|
||||
# Test batch storage
|
||||
result = await manager.batch_store_orderbooks(orderbooks)
|
||||
if result == 5:
|
||||
logger.info(f"✅ Batch order book storage: SUCCESS ({result} records)")
|
||||
logger.info(f" Batch order book storage: SUCCESS ({result} records)")
|
||||
else:
|
||||
logger.error(f"❌ Batch order book storage: PARTIAL ({result}/5 records)")
|
||||
logger.error(f" Batch order book storage: PARTIAL ({result}/5 records)")
|
||||
return False
|
||||
|
||||
# Create batch of trades
|
||||
@@ -166,16 +166,16 @@ async def test_batch_operations():
|
||||
# Test batch trade storage
|
||||
result = await manager.batch_store_trades(trades)
|
||||
if result == 10:
|
||||
logger.info(f"✅ Batch trade storage: SUCCESS ({result} records)")
|
||||
logger.info(f" Batch trade storage: SUCCESS ({result} records)")
|
||||
else:
|
||||
logger.error(f"❌ Batch trade storage: PARTIAL ({result}/10 records)")
|
||||
logger.error(f" Batch trade storage: PARTIAL ({result}/10 records)")
|
||||
return False
|
||||
|
||||
await manager.close()
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Batch operations test failed: {e}")
|
||||
logger.error(f" Batch operations test failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
@@ -186,31 +186,31 @@ async def test_configuration():
|
||||
try:
|
||||
# Test database configuration
|
||||
db_url = config.get_database_url()
|
||||
logger.info(f"✅ Database URL: {db_url.replace(config.database.password, '***')}")
|
||||
logger.info(f" Database URL: {db_url.replace(config.database.password, '***')}")
|
||||
|
||||
# Test Redis configuration
|
||||
redis_url = config.get_redis_url()
|
||||
logger.info(f"✅ Redis URL: {redis_url.replace(config.redis.password, '***')}")
|
||||
logger.info(f" Redis URL: {redis_url.replace(config.redis.password, '***')}")
|
||||
|
||||
# Test bucket sizes
|
||||
btc_bucket = config.get_bucket_size('BTCUSDT')
|
||||
eth_bucket = config.get_bucket_size('ETHUSDT')
|
||||
logger.info(f"✅ Bucket sizes: BTC=${btc_bucket}, ETH=${eth_bucket}")
|
||||
logger.info(f" Bucket sizes: BTC=${btc_bucket}, ETH=${eth_bucket}")
|
||||
|
||||
# Test configuration dict
|
||||
config_dict = config.to_dict()
|
||||
logger.info(f"✅ Configuration loaded: {len(config_dict)} sections")
|
||||
logger.info(f" Configuration loaded: {len(config_dict)} sections")
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Configuration test failed: {e}")
|
||||
logger.error(f" Configuration test failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def run_all_tests():
|
||||
"""Run all integration tests"""
|
||||
logger.info("🚀 Starting COBY Integration Tests")
|
||||
logger.info(" Starting COBY Integration Tests")
|
||||
logger.info("=" * 50)
|
||||
|
||||
tests = [
|
||||
@@ -228,11 +228,11 @@ async def run_all_tests():
|
||||
result = await test_func()
|
||||
results.append((test_name, result))
|
||||
if result:
|
||||
logger.info(f"✅ {test_name}: PASSED")
|
||||
logger.info(f" {test_name}: PASSED")
|
||||
else:
|
||||
logger.error(f"❌ {test_name}: FAILED")
|
||||
logger.error(f" {test_name}: FAILED")
|
||||
except Exception as e:
|
||||
logger.error(f"❌ {test_name}: ERROR - {e}")
|
||||
logger.error(f" {test_name}: ERROR - {e}")
|
||||
results.append((test_name, False))
|
||||
|
||||
# Summary
|
||||
@@ -244,7 +244,7 @@ async def run_all_tests():
|
||||
total = len(results)
|
||||
|
||||
for test_name, result in results:
|
||||
status = "✅ PASSED" if result else "❌ FAILED"
|
||||
status = " PASSED" if result else " FAILED"
|
||||
logger.info(f"{test_name:20} {status}")
|
||||
|
||||
logger.info(f"\nOverall: {passed}/{total} tests passed")
|
||||
@@ -253,7 +253,7 @@ async def run_all_tests():
|
||||
logger.info("🎉 All tests passed! System is ready.")
|
||||
return True
|
||||
else:
|
||||
logger.error("⚠️ Some tests failed. Check configuration and database connection.")
|
||||
logger.error(" Some tests failed. Check configuration and database connection.")
|
||||
return False
|
||||
|
||||
|
||||
@@ -269,6 +269,6 @@ if __name__ == "__main__":
|
||||
print("The system is ready for the next development phase.")
|
||||
sys.exit(0)
|
||||
else:
|
||||
print("\n❌ Integration tests failed!")
|
||||
print("\n Integration tests failed!")
|
||||
print("Please check the logs and fix any issues before proceeding.")
|
||||
sys.exit(1)
|
||||
@@ -226,10 +226,10 @@ async def test_connector_compatibility():
|
||||
status = connector.get_connection_status()
|
||||
print(f" ✓ Connection status: {status.value}")
|
||||
|
||||
print(f" ✅ {name.upper()} connector passed all tests")
|
||||
print(f" {name.upper()} connector passed all tests")
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ {name.upper()} connector failed: {e}")
|
||||
print(f" {name.upper()} connector failed: {e}")
|
||||
|
||||
print("\n=== All Connector Tests Completed ===")
|
||||
return True
|
||||
@@ -278,6 +278,6 @@ if __name__ == "__main__":
|
||||
async def run_all_tests():
|
||||
await test_connector_compatibility()
|
||||
await test_multi_connector_data_flow()
|
||||
print("✅ All connector tests completed successfully")
|
||||
print(" All connector tests completed successfully")
|
||||
|
||||
asyncio.run(run_all_tests())
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
## Issues Fixed
|
||||
|
||||
### 1. Empty Chart (No 1m Candlesticks) ✅
|
||||
### 1. Empty Chart (No 1m Candlesticks)
|
||||
**Problem**: The 1m candlestick bars disappeared from the chart.
|
||||
|
||||
**Root Cause**: The pivot points calculation in `_add_pivot_points_to_chart` was throwing errors and preventing the chart from rendering.
|
||||
@@ -14,7 +14,7 @@
|
||||
|
||||
**Location**: `web/clean_dashboard.py` lines 4365-4369
|
||||
|
||||
### 2. Missing Variable Error: `portfolio_str` ✅
|
||||
### 2. Missing Variable Error: `portfolio_str`
|
||||
**Problem**: `name 'portfolio_str' is not defined` error in `update_metrics` callback.
|
||||
|
||||
**Root Cause**: When adding the Open Interest output, the code that calculated `portfolio_str` and `multiplier_str` was accidentally removed.
|
||||
@@ -38,7 +38,7 @@ mexc_status = "Connected" if self._check_exchange_connection() else "Disconnecte
|
||||
|
||||
**Location**: `web/clean_dashboard.py` lines 1808-1820
|
||||
|
||||
### 3. Missing Variable Error: `eth_components` ✅
|
||||
### 3. Missing Variable Error: `eth_components`
|
||||
**Problem**: `name 'eth_components' is not defined` error in `update_cob_data` callback.
|
||||
|
||||
**Root Cause**: The COB components building code was missing from the callback.
|
||||
@@ -54,7 +54,7 @@ btc_components = html.Div("BTC COB: Loading...", className="text-muted")
|
||||
|
||||
**Note**: This is a temporary fix. The full COB ladder rendering should be restored later.
|
||||
|
||||
### 4. Over-Scanning Data Provider ✅
|
||||
### 4. Over-Scanning Data Provider
|
||||
**Problem**: Excessive API calls to fetch Open Interest data every 2 seconds (matching the metrics update interval).
|
||||
|
||||
**Example from logs**:
|
||||
|
||||
@@ -25,9 +25,9 @@ python check_stream.py snapshot
|
||||
## What You'll See
|
||||
|
||||
### Stream Status Output
|
||||
- ✅ Dashboard is running
|
||||
- Dashboard is running
|
||||
- 📊 Health status
|
||||
- 🔄 Stream connection and streaming status
|
||||
- Stream connection and streaming status
|
||||
- 📈 Total samples and active streams
|
||||
- 🟢/🔴 Buffer sizes for each data type
|
||||
|
||||
@@ -46,7 +46,7 @@ python check_stream.py snapshot
|
||||
- Bid/ask volumes for each bucket
|
||||
|
||||
### Snapshot Output
|
||||
- ✅ Snapshot saved with filepath
|
||||
- Snapshot saved with filepath
|
||||
- 📅 Timestamp of creation
|
||||
|
||||
## API Endpoints
|
||||
|
||||
@@ -6,31 +6,31 @@ All model management functionality has been consolidated into a single, unified
|
||||
## What Was Consolidated
|
||||
|
||||
### Files Removed/Migrated:
|
||||
1. ✅ `utils/model_registry.py` → **CONSOLIDATED**
|
||||
2. ✅ `utils/checkpoint_manager.py` → **CONSOLIDATED**
|
||||
3. ✅ `improved_model_saver.py` → **CONSOLIDATED**
|
||||
4. ✅ `model_checkpoint_saver.py` → **CONSOLIDATED**
|
||||
5. ✅ `models.py` (legacy registry) → **CONSOLIDATED**
|
||||
1. `utils/model_registry.py` → **CONSOLIDATED**
|
||||
2. `utils/checkpoint_manager.py` → **CONSOLIDATED**
|
||||
3. `improved_model_saver.py` → **CONSOLIDATED**
|
||||
4. `model_checkpoint_saver.py` → **CONSOLIDATED**
|
||||
5. `models.py` (legacy registry) → **CONSOLIDATED**
|
||||
|
||||
### Classes Consolidated:
|
||||
1. ✅ `ModelRegistry` (utils/model_registry.py)
|
||||
2. ✅ `CheckpointManager` (utils/checkpoint_manager.py)
|
||||
3. ✅ `CheckpointMetadata` (utils/checkpoint_manager.py)
|
||||
4. ✅ `ImprovedModelSaver` (improved_model_saver.py)
|
||||
5. ✅ `ModelCheckpointSaver` (model_checkpoint_saver.py)
|
||||
6. ✅ `ModelRegistry` (models.py - legacy)
|
||||
1. `ModelRegistry` (utils/model_registry.py)
|
||||
2. `CheckpointManager` (utils/checkpoint_manager.py)
|
||||
3. `CheckpointMetadata` (utils/checkpoint_manager.py)
|
||||
4. `ImprovedModelSaver` (improved_model_saver.py)
|
||||
5. `ModelCheckpointSaver` (model_checkpoint_saver.py)
|
||||
6. `ModelRegistry` (models.py - legacy)
|
||||
|
||||
## New Unified System
|
||||
|
||||
### Primary Class: `ModelManager` (`NN/training/model_manager.py`)
|
||||
|
||||
#### Key Features:
|
||||
- ✅ **Unified Directory Structure**: Uses `@checkpoints/` structure
|
||||
- ✅ **All Model Types**: CNN, DQN, RL, Transformer, Hybrid
|
||||
- ✅ **Enhanced Metrics**: Comprehensive performance tracking
|
||||
- ✅ **Robust Saving**: Multiple fallback strategies
|
||||
- ✅ **Checkpoint Management**: W&B integration support
|
||||
- ✅ **Legacy Compatibility**: Maintains all existing APIs
|
||||
- **Unified Directory Structure**: Uses `@checkpoints/` structure
|
||||
- **All Model Types**: CNN, DQN, RL, Transformer, Hybrid
|
||||
- **Enhanced Metrics**: Comprehensive performance tracking
|
||||
- **Robust Saving**: Multiple fallback strategies
|
||||
- **Checkpoint Management**: W&B integration support
|
||||
- **Legacy Compatibility**: Maintains all existing APIs
|
||||
|
||||
#### Directory Structure:
|
||||
```
|
||||
@@ -72,7 +72,7 @@ from NN.training.model_manager import (
|
||||
|
||||
## API Compatibility
|
||||
|
||||
### ✅ **Fully Backward Compatible**
|
||||
### **Fully Backward Compatible**
|
||||
All existing function calls continue to work:
|
||||
|
||||
```python
|
||||
@@ -83,7 +83,7 @@ save_checkpoint(model, "my_model", "cnn", metrics)
|
||||
checkpoint = load_best_checkpoint("my_model")
|
||||
```
|
||||
|
||||
### ✅ **Enhanced Functionality**
|
||||
### **Enhanced Functionality**
|
||||
New features available through unified interface:
|
||||
|
||||
```python
|
||||
@@ -105,7 +105,7 @@ leaderboard = manager.get_model_leaderboard()
|
||||
|
||||
## Files Updated
|
||||
|
||||
### ✅ **Core Files Updated:**
|
||||
### **Core Files Updated:**
|
||||
1. `core/orchestrator.py` - Uses new ModelManager
|
||||
2. `web/clean_dashboard.py` - Updated imports
|
||||
3. `NN/models/dqn_agent.py` - Updated imports
|
||||
@@ -113,7 +113,7 @@ leaderboard = manager.get_model_leaderboard()
|
||||
5. `tests/test_training.py` - Updated imports
|
||||
6. `main.py` - Updated imports
|
||||
|
||||
### ✅ **Backup Created:**
|
||||
### **Backup Created:**
|
||||
All old files moved to `backup/old_model_managers/` for reference.
|
||||
|
||||
## Benefits Achieved
|
||||
@@ -124,37 +124,37 @@ All old files moved to `backup/old_model_managers/` for reference.
|
||||
- **Reduction**: ~60% code duplication eliminated
|
||||
|
||||
### 🔧 **Maintenance:**
|
||||
- ✅ Single source of truth for model management
|
||||
- ✅ Consistent API across all model types
|
||||
- ✅ Centralized configuration and settings
|
||||
- ✅ Unified error handling and logging
|
||||
- Single source of truth for model management
|
||||
- Consistent API across all model types
|
||||
- Centralized configuration and settings
|
||||
- Unified error handling and logging
|
||||
|
||||
### 🚀 **Enhanced Features:**
|
||||
- ✅ `@checkpoints/` directory structure
|
||||
- ✅ W&B integration support
|
||||
- ✅ Enhanced performance metrics
|
||||
- ✅ Multiple save strategies with fallbacks
|
||||
- ✅ Comprehensive checkpoint management
|
||||
### **Enhanced Features:**
|
||||
- `@checkpoints/` directory structure
|
||||
- W&B integration support
|
||||
- Enhanced performance metrics
|
||||
- Multiple save strategies with fallbacks
|
||||
- Comprehensive checkpoint management
|
||||
|
||||
### 🔄 **Compatibility:**
|
||||
- ✅ Zero breaking changes for existing code
|
||||
- ✅ All existing APIs preserved
|
||||
- ✅ Legacy function calls still work
|
||||
- ✅ Gradual migration path available
|
||||
### **Compatibility:**
|
||||
- Zero breaking changes for existing code
|
||||
- All existing APIs preserved
|
||||
- Legacy function calls still work
|
||||
- Gradual migration path available
|
||||
|
||||
## Migration Verification
|
||||
|
||||
### ✅ **Test Commands:**
|
||||
### **Test Commands:**
|
||||
```bash
|
||||
# Test the new unified system
|
||||
cd /mnt/shared/DEV/repos/d-popov.com/gogo2
|
||||
python -c "from NN.training.model_manager import create_model_manager; m = create_model_manager(); print('✅ ModelManager works')"
|
||||
python -c "from NN.training.model_manager import create_model_manager; m = create_model_manager(); print(' ModelManager works')"
|
||||
|
||||
# Test legacy compatibility
|
||||
python -c "from NN.training.model_manager import save_model, load_model; print('✅ Legacy functions work')"
|
||||
python -c "from NN.training.model_manager import save_model, load_model; print(' Legacy functions work')"
|
||||
```
|
||||
|
||||
### ✅ **Integration Tests:**
|
||||
### **Integration Tests:**
|
||||
- Clean dashboard loads without errors
|
||||
- Model saving/loading works correctly
|
||||
- Checkpoint management functions properly
|
||||
@@ -176,8 +176,8 @@ If any issues arise, the old files are preserved in `backup/old_model_managers/`
|
||||
|
||||
---
|
||||
|
||||
**Status**: ✅ **MIGRATION COMPLETE**
|
||||
**Status**: **MIGRATION COMPLETE**
|
||||
**Date**: $(date)
|
||||
**Files Consolidated**: 5 → 1
|
||||
**Code Reduction**: ~60%
|
||||
**Compatibility**: ✅ 100% Backward Compatible
|
||||
**Compatibility**: 100% Backward Compatible
|
||||
|
||||
@@ -363,7 +363,7 @@ class EnhancedRLTrainingIntegrator:
|
||||
|
||||
# Integration status
|
||||
if self.training_stats['comprehensive_features_used'] > 0:
|
||||
logger.info("STATUS: COMPREHENSIVE RL TRAINING INTEGRATION SUCCESSFUL! ✅")
|
||||
logger.info("STATUS: COMPREHENSIVE RL TRAINING INTEGRATION SUCCESSFUL! ")
|
||||
logger.info("The system is now using the full 13,400 feature comprehensive state.")
|
||||
else:
|
||||
logger.warning("STATUS: Integration partially successful - some fallbacks may occur")
|
||||
|
||||
@@ -23,13 +23,13 @@
|
||||
|
||||
2. **Calls ALL Models**
|
||||
```python
|
||||
# ✅ CNN Model
|
||||
# CNN Model
|
||||
cnn_prediction = self.orchestrator.cnn_model.predict(cnn_features)
|
||||
|
||||
# ✅ DQN Agent
|
||||
# DQN Agent
|
||||
action = self.orchestrator.dqn_agent.act(dqn_state)
|
||||
|
||||
# ✅ COB RL
|
||||
# COB RL
|
||||
cob_prediction = self.orchestrator.cob_rl_model.predict(cob_features)
|
||||
```
|
||||
|
||||
@@ -86,9 +86,9 @@ class TradingOrchestrator:
|
||||
)
|
||||
|
||||
if result:
|
||||
logger.info(f"✅ Signal executed successfully")
|
||||
logger.info(f" Signal executed successfully")
|
||||
else:
|
||||
logger.warning(f"⚠️ Signal execution failed or blocked")
|
||||
logger.warning(f" Signal execution failed or blocked")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing prediction signal: {e}")
|
||||
@@ -116,7 +116,7 @@ class CleanTradingDashboard:
|
||||
name="PredictionLoop"
|
||||
)
|
||||
self.prediction_thread.start()
|
||||
logger.info("🔄 Real-time prediction loop started in background")
|
||||
logger.info(" Real-time prediction loop started in background")
|
||||
```
|
||||
|
||||
### Step 3: Update Data Provider (if needed)
|
||||
@@ -151,22 +151,22 @@ async def get_latest_candles(self, symbol: str, timeframe: str, limit: int = 100
|
||||
INFO:web.clean_dashboard:🔗 Running initial chained inference...
|
||||
INFO:web.clean_dashboard:🔗 Running chained inference for ETH/USDT with 10 steps
|
||||
WARNING:core.orchestrator:No model predictions available for step 0
|
||||
WARNING:web.clean_dashboard:❌ Chained inference returned no predictions
|
||||
WARNING:web.clean_dashboard: Chained inference returned no predictions
|
||||
|
||||
# Then nothing... models never called again
|
||||
```
|
||||
|
||||
### After (Expected):
|
||||
```
|
||||
INFO:core.realtime_prediction_loop:🔄 Starting Real-Time Prediction Loop
|
||||
INFO:core.realtime_prediction_loop:🔄 Prediction loop started for ETH/USDT
|
||||
INFO:core.realtime_prediction_loop:🔄 Prediction loop started for BTC/USDT
|
||||
INFO:core.realtime_prediction_loop: Starting Real-Time Prediction Loop
|
||||
INFO:core.realtime_prediction_loop: Prediction loop started for ETH/USDT
|
||||
INFO:core.realtime_prediction_loop: Prediction loop started for BTC/USDT
|
||||
|
||||
# Every 1-5 seconds:
|
||||
INFO:core.realtime_prediction_loop:📊 New 1s candle detected for ETH/USDT - running predictions
|
||||
INFO:core.realtime_prediction_loop:✅ CNN prediction for ETH/USDT: {'action': 'BUY', 'confidence': 0.78}
|
||||
INFO:core.realtime_prediction_loop:✅ DQN prediction for ETH/USDT: BUY
|
||||
INFO:core.realtime_prediction_loop:✅ COB RL prediction for ETH/USDT: {'action': 'BUY', 'confidence': 0.82}
|
||||
INFO:core.realtime_prediction_loop: CNN prediction for ETH/USDT: {'action': 'BUY', 'confidence': 0.78}
|
||||
INFO:core.realtime_prediction_loop: DQN prediction for ETH/USDT: BUY
|
||||
INFO:core.realtime_prediction_loop: COB RL prediction for ETH/USDT: {'action': 'BUY', 'confidence': 0.82}
|
||||
INFO:core.realtime_prediction_loop:📤 Trading signal sent for ETH/USDT: BUY (confidence: 0.80, trigger: new_1s_candle)
|
||||
|
||||
INFO:core.orchestrator:📥 Received prediction signal: BUY for ETH/USDT (conf: 0.80)
|
||||
@@ -180,10 +180,10 @@ INFO:core.trading_executor:Executing BUY: 0.050000 ETH/USDT at $4191.25
|
||||
### Check if Prediction Loop is Running:
|
||||
```python
|
||||
# In dashboard or orchestrator logs, look for:
|
||||
- "🔄 Real-time prediction loop started"
|
||||
- " Real-time prediction loop started"
|
||||
- "📊 New 1s candle detected" (every second)
|
||||
- "✅ CNN prediction" (model being called!)
|
||||
- "✅ DQN prediction" (model being called!)
|
||||
- " CNN prediction" (model being called!)
|
||||
- " DQN prediction" (model being called!)
|
||||
- "📤 Trading signal sent"
|
||||
```
|
||||
|
||||
@@ -208,7 +208,7 @@ cob_predictions_count = 0
|
||||
|
||||
## Files Modified
|
||||
|
||||
1. ✅ **core/realtime_prediction_loop.py** (NEW)
|
||||
1. **core/realtime_prediction_loop.py** (NEW)
|
||||
- Created prediction loop
|
||||
|
||||
2. ⏳ **core/orchestrator.py** (TO MODIFY)
|
||||
|
||||
10
TODO.md
10
TODO.md
@@ -1,4 +1,4 @@
|
||||
# 🚀 GOGO2 Enhanced Trading System - TODO
|
||||
# GOGO2 Enhanced Trading System - TODO
|
||||
|
||||
## 🎯 **IMMEDIATE PRIORITIES** (System Stability & Core Performance)
|
||||
|
||||
@@ -206,26 +206,26 @@ initial dash loads 180 historical candles, but then we drop them when we get the
|
||||
use existing checkpoint manager if it;s not too bloated as well. otherwise re-implement clean one where we keep rotate up to 5 checkpoints - best if we can reliably measure performance, otherwise latest 5
|
||||
|
||||
|
||||
### **✅ Trading Integration**
|
||||
### ** Trading Integration**
|
||||
- [ ] Recent signals show with confidence levels
|
||||
- [ ] Manual BUY/SELL buttons work
|
||||
- [ ] Executed vs blocked signals displayed
|
||||
- [ ] Current position shows correctly
|
||||
- [ ] Session P&L updates in real-time
|
||||
|
||||
### **✅ COB Integration**
|
||||
### ** COB Integration**
|
||||
- [ ] System status shows "COB: Active"
|
||||
- [ ] ETH/USDT COB data displays
|
||||
- [ ] BTC/USDT COB data displays
|
||||
- [ ] Order book metrics update
|
||||
|
||||
### **✅ Training Pipeline**
|
||||
### ** Training Pipeline**
|
||||
- [ ] CNN model status shows "Active"
|
||||
- [ ] RL model status shows "Training"
|
||||
- [ ] Training metrics update
|
||||
- [ ] Model performance data available
|
||||
|
||||
### **✅ Performance**
|
||||
### ** Performance**
|
||||
- [ ] Chart updates every second
|
||||
- [ ] No flickering or data loss
|
||||
- [ ] WebSocket connection stable
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
|
||||
## Critical Issues Identified
|
||||
|
||||
### 1. Division by Zero ✅ FIXED
|
||||
### 1. Division by Zero FIXED
|
||||
**Problem**: Trading executor crashed when price was 0 or invalid
|
||||
**Solution**: Added price validation before division in `core/trading_executor.py`
|
||||
```python
|
||||
@@ -16,14 +16,14 @@ if current_price <= 0:
|
||||
return False
|
||||
```
|
||||
|
||||
### 2. Mock Predictions ✅ FIXED
|
||||
### 2. Mock Predictions FIXED
|
||||
**Problem**: System fell back to "mock predictions" when training unavailable (POLICY VIOLATION!)
|
||||
**Solution**: Removed mock fallback, system now fails gracefully
|
||||
```python
|
||||
logger.error("CRITICAL: Enhanced training system not available - predictions disabled. NEVER use mock data.")
|
||||
```
|
||||
|
||||
### 3. Torch Import ✅ ALREADY FIXED
|
||||
### 3. Torch Import ALREADY FIXED
|
||||
**Problem**: "cannot access local variable 'torch'" error
|
||||
**Status**: Already has None placeholder when import fails
|
||||
|
||||
@@ -182,14 +182,14 @@ def train_on_trade_outcome(self, signal_data, trade_record, reward):
|
||||
self._train_cob_on_outcome(cob_data, action, reward, weight)
|
||||
logger.info(f"COB RL trained with weight {weight:.2f}")
|
||||
|
||||
logger.info(f"✅ TRAINED ALL MODELS: PnL=${trade_record.pnl:.2f}, Reward={reward:.4f}")
|
||||
logger.info(f" TRAINED ALL MODELS: PnL=${trade_record.pnl:.2f}, Reward={reward:.4f}")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Implementation Steps
|
||||
|
||||
### Phase 1: Core Infrastructure (Priority 1) ✅
|
||||
### Phase 1: Core Infrastructure (Priority 1)
|
||||
- [x] Fix division by zero
|
||||
- [x] Remove mock predictions
|
||||
- [x] Fix torch imports
|
||||
@@ -256,7 +256,7 @@ def train_on_trade_outcome(self, signal_data, trade_record, reward):
|
||||
|
||||
### Log Messages to Watch:
|
||||
```
|
||||
✅ TRAINED ALL MODELS: PnL=$2.35, Reward=25.40
|
||||
TRAINED ALL MODELS: PnL=$2.35, Reward=25.40
|
||||
REWARD CALC: PnL=0.0235, Time=-0.002, Risk=1.15, Final=25.40
|
||||
CNN trained with weight 0.35
|
||||
DQN trained with weight 0.45, loss=0.0123
|
||||
|
||||
@@ -48,26 +48,26 @@ initial dash loads 180 historical candles, but then we drop them when we get the
|
||||
use existing checkpoint manager if it;s not too bloated as well. otherwise re-implement clean one where we keep rotate up to 5 checkpoints - best if we can reliably measure performance, otherwise latest 5
|
||||
|
||||
|
||||
### **✅ Trading Integration**
|
||||
### ** Trading Integration**
|
||||
- [ ] Recent signals show with confidence levels
|
||||
- [ ] Manual BUY/SELL buttons work
|
||||
- [ ] Executed vs blocked signals displayed
|
||||
- [ ] Current position shows correctly
|
||||
- [ ] Session P&L updates in real-time
|
||||
|
||||
### **✅ COB Integration**
|
||||
### ** COB Integration**
|
||||
- [ ] System status shows "COB: Active"
|
||||
- [ ] ETH/USDT COB data displays
|
||||
- [ ] BTC/USDT COB data displays
|
||||
- [ ] Order book metrics update
|
||||
|
||||
### **✅ Training Pipeline**
|
||||
### ** Training Pipeline**
|
||||
- [ ] CNN model status shows "Active"
|
||||
- [ ] RL model status shows "Training"
|
||||
- [ ] Training metrics update
|
||||
- [ ] Model performance data available
|
||||
|
||||
### **✅ Performance**
|
||||
### ** Performance**
|
||||
- [ ] Chart updates every second
|
||||
- [ ] No flickering or data loss
|
||||
- [ ] WebSocket connection stable
|
||||
|
||||
@@ -277,7 +277,7 @@ class DataProvider:
|
||||
if DUCKDB_STORAGE_AVAILABLE:
|
||||
try:
|
||||
self.duckdb_storage = DuckDBStorage()
|
||||
logger.info("✅ DuckDB storage initialized (unified Parquet + SQL)")
|
||||
logger.info(" DuckDB storage initialized (unified Parquet + SQL)")
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not initialize DuckDB storage: {e}")
|
||||
|
||||
@@ -396,7 +396,7 @@ class DataProvider:
|
||||
|
||||
if success:
|
||||
self._unified_storage_enabled = True
|
||||
logger.info("✅ Unified storage system enabled successfully")
|
||||
logger.info(" Unified storage system enabled successfully")
|
||||
return True
|
||||
else:
|
||||
logger.error("Failed to enable unified storage system")
|
||||
@@ -550,7 +550,7 @@ class DataProvider:
|
||||
else:
|
||||
logger.info("Skipping initial data load (using DuckDB cache)")
|
||||
|
||||
logger.info("✅ Initial data load completed - stopping maintenance worker")
|
||||
logger.info(" Initial data load completed - stopping maintenance worker")
|
||||
logger.info("📊 Data will be updated on-demand only (no continuous fetching)")
|
||||
|
||||
# Stop the maintenance worker after initial load
|
||||
@@ -602,7 +602,7 @@ class DataProvider:
|
||||
# Cap at 1500 candles maximum
|
||||
fetch_limit = min(estimated_missing + 10, 1500)
|
||||
|
||||
logger.info(f"🔄 Fetching {fetch_limit} recent candles for {symbol} {timeframe} (since {last_timestamp})")
|
||||
logger.info(f" Fetching {fetch_limit} recent candles for {symbol} {timeframe} (since {last_timestamp})")
|
||||
new_df = self._fetch_from_binance(symbol, timeframe, fetch_limit)
|
||||
|
||||
if new_df is None or new_df.empty:
|
||||
@@ -622,9 +622,9 @@ class DataProvider:
|
||||
combined_df = combined_df.sort_index()
|
||||
self.cached_data[symbol][timeframe] = combined_df.tail(1500)
|
||||
|
||||
logger.info(f"✅ {symbol} {timeframe}: +{len(new_df)} new (total: {len(self.cached_data[symbol][timeframe])})")
|
||||
logger.info(f" {symbol} {timeframe}: +{len(new_df)} new (total: {len(self.cached_data[symbol][timeframe])})")
|
||||
else:
|
||||
logger.info(f"✅ {symbol} {timeframe}: Up to date ({len(existing_df)} candles)")
|
||||
logger.info(f" {symbol} {timeframe}: Up to date ({len(existing_df)} candles)")
|
||||
else:
|
||||
# No existing data - fetch initial 1500 candles
|
||||
logger.info(f"🆕 No existing data, fetching 1500 candles for {symbol} {timeframe}")
|
||||
@@ -643,7 +643,7 @@ class DataProvider:
|
||||
with self.data_lock:
|
||||
self.cached_data[symbol][timeframe] = df
|
||||
|
||||
logger.info(f"✅ Loaded {len(df)} candles for {symbol} {timeframe}")
|
||||
logger.info(f" Loaded {len(df)} candles for {symbol} {timeframe}")
|
||||
|
||||
# Small delay to avoid rate limits
|
||||
time.sleep(0.1)
|
||||
@@ -651,7 +651,7 @@ class DataProvider:
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading data for {symbol} {timeframe}: {e}")
|
||||
|
||||
logger.info("✅ Smart incremental data load completed")
|
||||
logger.info(" Smart incremental data load completed")
|
||||
|
||||
def _start_background_catch_up(self):
|
||||
"""
|
||||
@@ -737,9 +737,9 @@ class DataProvider:
|
||||
|
||||
final_count = len(self.cached_data[symbol][timeframe])
|
||||
|
||||
logger.info(f"✅ {symbol} {timeframe}: Caught up! Now have {final_count} candles")
|
||||
logger.info(f" {symbol} {timeframe}: Caught up! Now have {final_count} candles")
|
||||
else:
|
||||
logger.warning(f"❌ {symbol} {timeframe}: Could not fetch historical data from any exchange")
|
||||
logger.warning(f" {symbol} {timeframe}: Could not fetch historical data from any exchange")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error catching up candles for {symbol} {timeframe}: {e}")
|
||||
@@ -775,7 +775,7 @@ class DataProvider:
|
||||
# Cap at 1500 candles maximum
|
||||
fetch_limit = min(estimated_missing + 5, 1500)
|
||||
|
||||
logger.info(f"🔄 Fetching {fetch_limit} recent candles for {symbol} {timeframe} (since {last_timestamp})")
|
||||
logger.info(f" Fetching {fetch_limit} recent candles for {symbol} {timeframe} (since {last_timestamp})")
|
||||
|
||||
# Fetch missing candles
|
||||
df = self._fetch_from_binance(symbol, timeframe, fetch_limit)
|
||||
@@ -811,7 +811,7 @@ class DataProvider:
|
||||
|
||||
candle_count = len(self.cached_data[symbol][timeframe])
|
||||
|
||||
logger.info(f"✅ Updated {symbol} {timeframe}: +{len(df)} new (total: {candle_count})")
|
||||
logger.info(f" Updated {symbol} {timeframe}: +{len(df)} new (total: {candle_count})")
|
||||
else:
|
||||
logger.warning(f"Could not fetch new data for {symbol} {timeframe}")
|
||||
else:
|
||||
@@ -827,17 +827,17 @@ class DataProvider:
|
||||
try:
|
||||
if symbol and timeframe:
|
||||
# Refresh specific symbol/timeframe
|
||||
logger.info(f"🔄 Manual refresh requested for {symbol} {timeframe}")
|
||||
logger.info(f" Manual refresh requested for {symbol} {timeframe}")
|
||||
self._update_cached_data(symbol, timeframe)
|
||||
else:
|
||||
# Refresh all symbols/timeframes
|
||||
logger.info("🔄 Manual refresh requested for all symbols/timeframes")
|
||||
logger.info(" Manual refresh requested for all symbols/timeframes")
|
||||
for sym in self.symbols:
|
||||
for tf in self.timeframes:
|
||||
self._update_cached_data(sym, tf)
|
||||
time.sleep(0.1) # Small delay to avoid rate limits
|
||||
|
||||
logger.info("✅ Manual refresh completed for all symbols/timeframes")
|
||||
logger.info(" Manual refresh completed for all symbols/timeframes")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in manual refresh: {e}")
|
||||
@@ -3107,7 +3107,7 @@ class DataProvider:
|
||||
def _load_from_duckdb_sync(self):
|
||||
"""Load all data from DuckDB synchronously for instant startup"""
|
||||
if not self.duckdb_storage:
|
||||
logger.warning("⚠️ DuckDB storage not available - cannot load cached data")
|
||||
logger.warning(" DuckDB storage not available - cannot load cached data")
|
||||
return
|
||||
|
||||
logger.info("📦 Loading cached data from DuckDB...")
|
||||
@@ -3125,18 +3125,18 @@ class DataProvider:
|
||||
if df is not None and not df.empty:
|
||||
with self.data_lock:
|
||||
self.cached_data[symbol][timeframe] = df.tail(1500)
|
||||
logger.info(f"✅ {symbol} {timeframe}: {len(df)} candles from DuckDB")
|
||||
logger.info(f" {symbol} {timeframe}: {len(df)} candles from DuckDB")
|
||||
loaded_count += len(df)
|
||||
else:
|
||||
logger.debug(f"No data in DuckDB for {symbol} {timeframe} - will fetch from API")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error loading {symbol} {timeframe}: {e}")
|
||||
logger.error(f" Error loading {symbol} {timeframe}: {e}")
|
||||
|
||||
if loaded_count > 0:
|
||||
logger.info(f"✅ Loaded {loaded_count:,} candles total")
|
||||
logger.info(f" Loaded {loaded_count:,} candles total")
|
||||
else:
|
||||
logger.warning("⚠️ No cached data found - will fetch from API")
|
||||
logger.warning(" No cached data found - will fetch from API")
|
||||
|
||||
def _load_from_duckdb(self, symbol: str, timeframe: str, limit: int = 1500) -> Optional[pd.DataFrame]:
|
||||
"""Load data from DuckDB storage
|
||||
@@ -3338,7 +3338,7 @@ class DataProvider:
|
||||
async def _start_fallback_websocket_streaming(self):
|
||||
"""Fallback to old WebSocket method if Enhanced COB WebSocket fails"""
|
||||
try:
|
||||
logger.warning("⚠️ Starting fallback WebSocket streaming")
|
||||
logger.warning(" Starting fallback WebSocket streaming")
|
||||
|
||||
# Start old WebSocket for each symbol
|
||||
for symbol in self.symbols:
|
||||
@@ -3346,7 +3346,7 @@ class DataProvider:
|
||||
self.websocket_tasks[symbol] = task
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error starting fallback WebSocket: {e}")
|
||||
logger.error(f" Error starting fallback WebSocket: {e}")
|
||||
|
||||
def get_cob_websocket_status(self) -> Dict[str, Any]:
|
||||
"""Get COB WebSocket status for dashboard"""
|
||||
|
||||
@@ -364,7 +364,7 @@ class EnhancedCOBWebSocket:
|
||||
try:
|
||||
await callback(symbol, cob_data)
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error in COB callback: {e}")
|
||||
logger.error(f" Error in COB callback: {e}")
|
||||
|
||||
logger.debug(f"Initial snapshot for {symbol}: ${mid_price:.2f}, spread: {spread_bps:.1f} bps")
|
||||
else:
|
||||
|
||||
@@ -324,10 +324,10 @@ class BybitRestClient:
|
||||
"""
|
||||
try:
|
||||
result = self.get_server_time()
|
||||
logger.info("✅ Bybit REST API connectivity test successful")
|
||||
logger.info(" Bybit REST API connectivity test successful")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Bybit REST API connectivity test failed: {e}")
|
||||
logger.error(f" Bybit REST API connectivity test failed: {e}")
|
||||
return False
|
||||
|
||||
def test_authentication(self) -> bool:
|
||||
@@ -338,8 +338,8 @@ class BybitRestClient:
|
||||
"""
|
||||
try:
|
||||
result = self.get_account_info()
|
||||
logger.info("✅ Bybit REST API authentication test successful")
|
||||
logger.info(" Bybit REST API authentication test successful")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Bybit REST API authentication test failed: {e}")
|
||||
logger.error(f" Bybit REST API authentication test failed: {e}")
|
||||
return False
|
||||
@@ -256,7 +256,7 @@ Each exchange was scored (1-5) across four weighted categories:
|
||||
| Criteria | Deribit | Binance | Bybit | OKX |
|
||||
|-------------------|---------------|---------------|---------------|---------------|
|
||||
| **Max Leverage** | 10× | 75× | 100× | 10× |
|
||||
| **Market Orders** | ✅ | ✅ | ✅ | ✅ |
|
||||
| **Market Orders** | | | | |
|
||||
| **Base Fee** | 0% maker | 0.02% maker | -0.01% maker | 0.02% maker |
|
||||
| **Python SDK** | Official | Robust | Low-latency | Full-featured |
|
||||
| **HFT Suitability**| ★★★★☆ | ★★★★★ | ★★★★☆ | ★★★☆☆ |
|
||||
|
||||
@@ -27,7 +27,7 @@ def test_final_mexc_order():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return
|
||||
|
||||
# Parameters
|
||||
@@ -68,9 +68,9 @@ def test_final_mexc_order():
|
||||
print(f"Response: {response.text}")
|
||||
|
||||
if response.status_code == 200:
|
||||
print("✅ SUCCESS!")
|
||||
print(" SUCCESS!")
|
||||
else:
|
||||
print("❌ FAILED")
|
||||
print(" FAILED")
|
||||
# Try alternative method - sending as query params
|
||||
print("\n--- Trying alternative method ---")
|
||||
test_alternative_method(api_key, api_secret)
|
||||
|
||||
@@ -59,7 +59,7 @@ def test_mexc_order_placement():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return
|
||||
|
||||
# Test parameters - very small order
|
||||
@@ -105,7 +105,7 @@ def test_mexc_order_placement():
|
||||
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
print("✅ Order placed successfully!")
|
||||
print(" Order placed successfully!")
|
||||
print(f"Order result: {result}")
|
||||
|
||||
# Try to cancel it immediately if we got an order ID
|
||||
@@ -131,11 +131,11 @@ def test_mexc_order_placement():
|
||||
print(f"Cancel response: {cancel_response.status_code} - {cancel_response.text}")
|
||||
|
||||
else:
|
||||
print("❌ Order placement failed")
|
||||
print(" Order placement failed")
|
||||
print(f"Response: {response.text}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Request error: {e}")
|
||||
print(f" Request error: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_mexc_order_placement()
|
||||
@@ -59,7 +59,7 @@ def test_mexc_order_v2():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return
|
||||
|
||||
# Order parameters matching MEXC examples
|
||||
@@ -99,19 +99,19 @@ def test_mexc_order_v2():
|
||||
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
print("✅ Order placed successfully!")
|
||||
print(" Order placed successfully!")
|
||||
print(f"Order result: {result}")
|
||||
|
||||
# Cancel immediately if successful
|
||||
if 'orderId' in result:
|
||||
print(f"\n🔄 Canceling order {result['orderId']}...")
|
||||
print(f"\n Canceling order {result['orderId']}...")
|
||||
cancel_order(api_key, api_secret, 'ETHUSDC', result['orderId'])
|
||||
|
||||
else:
|
||||
print("❌ Order placement failed")
|
||||
print(" Order placement failed")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Request error: {e}")
|
||||
print(f" Request error: {e}")
|
||||
|
||||
def cancel_order(api_key: str, secret_key: str, symbol: str, order_id: str):
|
||||
"""Cancel a MEXC order"""
|
||||
|
||||
@@ -42,7 +42,7 @@ def test_mexc_order_v3():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return
|
||||
|
||||
# Order parameters exactly like the examples
|
||||
@@ -92,19 +92,19 @@ def test_mexc_order_v3():
|
||||
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
print("✅ Order placed successfully!")
|
||||
print(" Order placed successfully!")
|
||||
print(f"Order result: {result}")
|
||||
|
||||
# Cancel immediately if successful
|
||||
if 'orderId' in result:
|
||||
print(f"\n🔄 Canceling order {result['orderId']}...")
|
||||
print(f"\n Canceling order {result['orderId']}...")
|
||||
cancel_order_v3(api_key, api_secret, 'ETHUSDC', result['orderId'])
|
||||
|
||||
else:
|
||||
print("❌ Order placement failed")
|
||||
print(" Order placement failed")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Request error: {e}")
|
||||
print(f" Request error: {e}")
|
||||
|
||||
def cancel_order_v3(api_key: str, secret_key: str, symbol: str, order_id: str):
|
||||
"""Cancel a MEXC order using V3 method"""
|
||||
|
||||
@@ -26,7 +26,7 @@ def debug_interface():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return False
|
||||
|
||||
from NN.exchanges.mexc_interface import MEXCInterface
|
||||
@@ -98,17 +98,17 @@ def debug_interface():
|
||||
|
||||
# Compare parameters
|
||||
print(f"\n📊 COMPARISON:")
|
||||
print(f"symbol: Interface='{interface_params['symbol']}', Manual='{manual_params['symbol']}' {'✅' if interface_params['symbol'] == manual_params['symbol'] else '❌'}")
|
||||
print(f"side: Interface='{interface_params['side']}', Manual='{manual_params['side']}' {'✅' if interface_params['side'] == manual_params['side'] else '❌'}")
|
||||
print(f"type: Interface='{interface_params['type']}', Manual='{manual_params['type']}' {'✅' if interface_params['type'] == manual_params['type'] else '❌'}")
|
||||
print(f"quantity: Interface='{interface_params['quantity']}', Manual='{manual_params['quantity']}' {'✅' if interface_params['quantity'] == manual_params['quantity'] else '❌'}")
|
||||
print(f"price: Interface='{interface_params['price']}', Manual='{manual_params['price']}' {'✅' if interface_params['price'] == manual_params['price'] else '❌'}")
|
||||
print(f"timestamp: Interface='{interface_params['timestamp']}', Manual='{manual_params['timestamp']}' {'✅' if interface_params['timestamp'] == manual_params['timestamp'] else '❌'}")
|
||||
print(f"recvWindow: Interface='{interface_params['recvWindow']}', Manual='{manual_params['recvWindow']}' {'✅' if interface_params['recvWindow'] == manual_params['recvWindow'] else '❌'}")
|
||||
print(f"symbol: Interface='{interface_params['symbol']}', Manual='{manual_params['symbol']}' {'' if interface_params['symbol'] == manual_params['symbol'] else ''}")
|
||||
print(f"side: Interface='{interface_params['side']}', Manual='{manual_params['side']}' {'' if interface_params['side'] == manual_params['side'] else ''}")
|
||||
print(f"type: Interface='{interface_params['type']}', Manual='{manual_params['type']}' {'' if interface_params['type'] == manual_params['type'] else ''}")
|
||||
print(f"quantity: Interface='{interface_params['quantity']}', Manual='{manual_params['quantity']}' {'' if interface_params['quantity'] == manual_params['quantity'] else ''}")
|
||||
print(f"price: Interface='{interface_params['price']}', Manual='{manual_params['price']}' {'' if interface_params['price'] == manual_params['price'] else ''}")
|
||||
print(f"timestamp: Interface='{interface_params['timestamp']}', Manual='{manual_params['timestamp']}' {'' if interface_params['timestamp'] == manual_params['timestamp'] else ''}")
|
||||
print(f"recvWindow: Interface='{interface_params['recvWindow']}', Manual='{manual_params['recvWindow']}' {'' if interface_params['recvWindow'] == manual_params['recvWindow'] else ''}")
|
||||
|
||||
# Check for timeInForce difference
|
||||
if 'timeInForce' in interface_params:
|
||||
print(f"timeInForce: Interface='{interface_params['timeInForce']}', Manual=None ❌ (EXTRA PARAMETER)")
|
||||
print(f"timeInForce: Interface='{interface_params['timeInForce']}', Manual=None (EXTRA PARAMETER)")
|
||||
|
||||
# Test without timeInForce
|
||||
print(f"\n🔧 TESTING WITHOUT timeInForce:")
|
||||
@@ -119,10 +119,10 @@ def debug_interface():
|
||||
print(f"Interface signature (no timeInForce): {interface_signature_minimal}")
|
||||
|
||||
if interface_signature_minimal == manual_signature:
|
||||
print("✅ Signatures match when timeInForce is removed!")
|
||||
print(" Signatures match when timeInForce is removed!")
|
||||
return True
|
||||
else:
|
||||
print("❌ Still don't match")
|
||||
print(" Still don't match")
|
||||
|
||||
return False
|
||||
|
||||
|
||||
@@ -31,7 +31,7 @@ def test_order_signature():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return False
|
||||
|
||||
# Test order parameters
|
||||
@@ -79,9 +79,9 @@ def test_order_signature():
|
||||
|
||||
# Compare
|
||||
if signature_manual == signature_interface:
|
||||
print("✅ Signatures match!")
|
||||
print(" Signatures match!")
|
||||
else:
|
||||
print("❌ Signatures don't match")
|
||||
print(" Signatures don't match")
|
||||
print("This indicates a problem with the signature generation method")
|
||||
return False
|
||||
|
||||
@@ -106,10 +106,10 @@ def test_order_signature():
|
||||
print(f"Response: {response.text}")
|
||||
|
||||
if response.status_code == 200:
|
||||
print("✅ Manual order method works!")
|
||||
print(" Manual order method works!")
|
||||
return True
|
||||
else:
|
||||
print("❌ Manual order method failed")
|
||||
print(" Manual order method failed")
|
||||
|
||||
# Test 4: Try test order endpoint
|
||||
print("\n4. Testing with test order endpoint:")
|
||||
@@ -119,7 +119,7 @@ def test_order_signature():
|
||||
print(f"Test order response: {response2.status_code} - {response2.text}")
|
||||
|
||||
if response2.status_code == 200:
|
||||
print("✅ Test order works - real order parameters might have issues")
|
||||
print(" Test order works - real order parameters might have issues")
|
||||
|
||||
# Test 5: Try different parameter variations
|
||||
print("\n5. Testing different parameter sets:")
|
||||
|
||||
@@ -28,7 +28,7 @@ def test_different_approaches():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return False
|
||||
|
||||
# Test order parameters
|
||||
@@ -109,13 +109,13 @@ def test_different_approaches():
|
||||
print(f"Response: {response.status_code} - {response.text}")
|
||||
|
||||
if response.status_code == 200:
|
||||
print(f"✅ {method} WORKS!")
|
||||
print(f" {method} WORKS!")
|
||||
return True
|
||||
else:
|
||||
print(f"❌ {method} failed")
|
||||
print(f" {method} failed")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ {method} error: {e}")
|
||||
print(f" {method} error: {e}")
|
||||
|
||||
# Try one more approach - use minimal parameters
|
||||
print("\n" + "=" * 60)
|
||||
@@ -149,11 +149,11 @@ def test_different_approaches():
|
||||
print(f"Minimal response: {response.status_code} - {response.text}")
|
||||
|
||||
if response.status_code == 200:
|
||||
print("✅ Minimal parameters work!")
|
||||
print(" Minimal parameters work!")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Minimal parameters error: {e}")
|
||||
print(f" Minimal parameters error: {e}")
|
||||
|
||||
return False
|
||||
|
||||
|
||||
@@ -30,7 +30,7 @@ def test_signature_generation():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return False
|
||||
|
||||
# Import the interface
|
||||
@@ -66,9 +66,9 @@ def test_signature_generation():
|
||||
|
||||
# Compare
|
||||
if signature_manual == signature_interface:
|
||||
print("✅ Signatures match!")
|
||||
print(" Signatures match!")
|
||||
else:
|
||||
print("❌ Signatures don't match")
|
||||
print(" Signatures don't match")
|
||||
print("This indicates a problem with the signature generation method")
|
||||
|
||||
# Test 3: Try account request with manual signature
|
||||
@@ -97,10 +97,10 @@ def test_signature_generation():
|
||||
print(f"Response: {response.text}")
|
||||
|
||||
if response.status_code == 200:
|
||||
print("✅ Manual method works!")
|
||||
print(" Manual method works!")
|
||||
return True
|
||||
else:
|
||||
print("❌ Manual method failed")
|
||||
print(" Manual method failed")
|
||||
|
||||
# Test 4: Try different parameter ordering
|
||||
print("\n4. Testing different parameter orderings:")
|
||||
|
||||
@@ -24,22 +24,22 @@ def test_small_order():
|
||||
api_secret = os.getenv('MEXC_SECRET_KEY', '')
|
||||
|
||||
if not api_key or not api_secret:
|
||||
print("❌ No MEXC API credentials found")
|
||||
print(" No MEXC API credentials found")
|
||||
return
|
||||
|
||||
# Create MEXC interface
|
||||
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=False)
|
||||
|
||||
if not mexc.connect():
|
||||
print("❌ Failed to connect to MEXC API")
|
||||
print(" Failed to connect to MEXC API")
|
||||
return
|
||||
|
||||
print("✅ Connected to MEXC API")
|
||||
print(" Connected to MEXC API")
|
||||
|
||||
# Get current price
|
||||
ticker = mexc.get_ticker("ETH/USDT") # Will be converted to ETHUSDC
|
||||
if not ticker:
|
||||
print("❌ Failed to get ticker")
|
||||
print(" Failed to get ticker")
|
||||
return
|
||||
|
||||
current_price = ticker['last']
|
||||
@@ -63,7 +63,7 @@ def test_small_order():
|
||||
)
|
||||
|
||||
if result:
|
||||
print("✅ Order placed successfully!")
|
||||
print(" Order placed successfully!")
|
||||
print(f"Order result: {result}")
|
||||
|
||||
# Try to cancel it immediately
|
||||
@@ -72,10 +72,10 @@ def test_small_order():
|
||||
cancel_result = mexc.cancel_order("ETH/USDT", result['orderId'])
|
||||
print(f"Cancel result: {cancel_result}")
|
||||
else:
|
||||
print("❌ Order placement failed")
|
||||
print(" Order placement failed")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Order error: {e}")
|
||||
print(f" Order error: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_small_order()
|
||||
@@ -106,9 +106,9 @@ async def test_live_trading():
|
||||
if user_input.upper() == 'YES':
|
||||
cancelled = executor._cancel_open_orders("ETH/USDT")
|
||||
if cancelled:
|
||||
logger.info("✅ Open orders cancelled successfully")
|
||||
logger.info(" Open orders cancelled successfully")
|
||||
else:
|
||||
logger.warning("⚠️ Some orders may not have been cancelled")
|
||||
logger.warning(" Some orders may not have been cancelled")
|
||||
else:
|
||||
logger.info("No open orders found")
|
||||
except Exception as e:
|
||||
@@ -146,7 +146,7 @@ async def test_live_trading():
|
||||
)
|
||||
|
||||
if success:
|
||||
logger.info("✅ Test BUY order executed successfully!")
|
||||
logger.info(" Test BUY order executed successfully!")
|
||||
|
||||
# Check order status
|
||||
await asyncio.sleep(1)
|
||||
@@ -168,14 +168,14 @@ async def test_live_trading():
|
||||
)
|
||||
|
||||
if success:
|
||||
logger.info("✅ Test SELL order executed successfully!")
|
||||
logger.info("✅ Full test trade cycle completed!")
|
||||
logger.info(" Test SELL order executed successfully!")
|
||||
logger.info(" Full test trade cycle completed!")
|
||||
else:
|
||||
logger.warning("❌ Test SELL order failed")
|
||||
logger.warning(" Test SELL order failed")
|
||||
else:
|
||||
logger.warning("❌ No position found after BUY order")
|
||||
logger.warning(" No position found after BUY order")
|
||||
else:
|
||||
logger.warning("❌ Test BUY order failed")
|
||||
logger.warning(" Test BUY order failed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing test trade: {e}")
|
||||
@@ -205,7 +205,7 @@ async def test_live_trading():
|
||||
try:
|
||||
open_orders = executor.exchange.get_open_orders("ETH/USDT")
|
||||
if open_orders and len(open_orders) > 0:
|
||||
logger.warning(f"⚠️ {len(open_orders)} open orders still pending:")
|
||||
logger.warning(f" {len(open_orders)} open orders still pending:")
|
||||
for order in open_orders:
|
||||
order_id = order.get('orderId', 'N/A')
|
||||
side = order.get('side', 'N/A')
|
||||
@@ -214,7 +214,7 @@ async def test_live_trading():
|
||||
status = order.get('status', 'N/A')
|
||||
logger.info(f" Order {order_id}: {side} {qty} ETH at ${price} - Status: {status}")
|
||||
else:
|
||||
logger.info("✅ No pending orders")
|
||||
logger.info(" No pending orders")
|
||||
except Exception as e:
|
||||
logger.error(f"Error checking final open orders: {e}")
|
||||
|
||||
|
||||
@@ -423,13 +423,13 @@ class ExtremaTrainer:
|
||||
self.context_data[symbol].last_update = datetime.now()
|
||||
|
||||
results[symbol] = True
|
||||
logger.info(f"✅ Loaded {len(context_data)} 1m candles for {symbol} context")
|
||||
logger.info(f" Loaded {len(context_data)} 1m candles for {symbol} context")
|
||||
else:
|
||||
results[symbol] = False
|
||||
logger.warning(f"❌ No 1m context data available for {symbol}")
|
||||
logger.warning(f" No 1m context data available for {symbol}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error loading context data for {symbol}: {e}")
|
||||
logger.error(f" Error loading context data for {symbol}: {e}")
|
||||
results[symbol] = False
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -110,11 +110,11 @@ class OvernightTrainingCoordinator:
|
||||
logger.info("🌙 OVERNIGHT TRAINING SESSION STARTED")
|
||||
logger.info("=" * 60)
|
||||
logger.info("Features enabled:")
|
||||
logger.info("✅ CNN training on signal changes")
|
||||
logger.info("✅ COB RL training on market microstructure")
|
||||
logger.info("✅ Trade execution and recording")
|
||||
logger.info("✅ Performance tracking and statistics")
|
||||
logger.info("✅ Model checkpointing")
|
||||
logger.info(" CNN training on signal changes")
|
||||
logger.info(" COB RL training on market microstructure")
|
||||
logger.info(" Trade execution and recording")
|
||||
logger.info(" Performance tracking and statistics")
|
||||
logger.info(" Model checkpointing")
|
||||
logger.info("=" * 60)
|
||||
|
||||
def stop_overnight_training(self):
|
||||
@@ -253,7 +253,7 @@ class OvernightTrainingCoordinator:
|
||||
status = "EXECUTED" if signal_record.executed else "SIGNAL_ONLY"
|
||||
logger.info(f"[{status}] {symbol} {decision.action} "
|
||||
f"(conf: {decision.confidence:.3f}, "
|
||||
f"training: {'✅' if signal_record.training_triggered else '❌'}, "
|
||||
f"training: {'' if signal_record.training_triggered else ''}, "
|
||||
f"pnl: {signal_record.trade_pnl:.2f if signal_record.trade_pnl else 'N/A'})")
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -49,7 +49,7 @@ class RealtimePredictionLoop:
|
||||
async def start(self):
|
||||
"""Start the continuous prediction loop"""
|
||||
self.running = True
|
||||
logger.info("🔄 Starting Real-Time Prediction Loop")
|
||||
logger.info(" Starting Real-Time Prediction Loop")
|
||||
|
||||
# Start prediction tasks for each symbol
|
||||
symbols = self.orchestrator.config.get('symbols', ['ETH/USDT', 'BTC/USDT'])
|
||||
@@ -67,7 +67,7 @@ class RealtimePredictionLoop:
|
||||
|
||||
async def _prediction_loop_for_symbol(self, symbol: str):
|
||||
"""Run prediction loop for a specific symbol"""
|
||||
logger.info(f"🔄 Prediction loop started for {symbol}")
|
||||
logger.info(f" Prediction loop started for {symbol}")
|
||||
|
||||
while self.running:
|
||||
try:
|
||||
@@ -194,10 +194,10 @@ class RealtimePredictionLoop:
|
||||
if cnn_input and cnn_input.data_quality_score > 0.5:
|
||||
cnn_data = self.unified_data_interface.get_model_specific_input(cnn_input, 'cnn')
|
||||
if cnn_data is not None:
|
||||
# ✅ THIS IS WHERE model.predict() GETS CALLED WITH CORRECT DATA!
|
||||
# THIS IS WHERE model.predict() GETS CALLED WITH CORRECT DATA!
|
||||
cnn_prediction = self.orchestrator.cnn_model.predict(cnn_data)
|
||||
predictions['cnn'] = cnn_prediction
|
||||
logger.info(f"✅ CNN prediction for {symbol}: {cnn_prediction} (quality: {cnn_input.data_quality_score:.2f})")
|
||||
logger.info(f" CNN prediction for {symbol}: {cnn_prediction} (quality: {cnn_input.data_quality_score:.2f})")
|
||||
except Exception as e:
|
||||
logger.error(f"CNN prediction error for {symbol}: {e}")
|
||||
|
||||
@@ -215,7 +215,7 @@ class RealtimePredictionLoop:
|
||||
'action': action,
|
||||
'action_name': ['SELL', 'HOLD', 'BUY'][action]
|
||||
}
|
||||
logger.info(f"✅ DQN prediction for {symbol}: {predictions['dqn']['action_name']} (quality: {dqn_input.data_quality_score:.2f})")
|
||||
logger.info(f" DQN prediction for {symbol}: {predictions['dqn']['action_name']} (quality: {dqn_input.data_quality_score:.2f})")
|
||||
except Exception as e:
|
||||
logger.error(f"DQN prediction error for {symbol}: {e}")
|
||||
|
||||
@@ -229,7 +229,7 @@ class RealtimePredictionLoop:
|
||||
if cob_data is not None and hasattr(self.orchestrator.cob_rl_model, 'predict'):
|
||||
cob_prediction = self.orchestrator.cob_rl_model.predict(cob_data)
|
||||
predictions['cob_rl'] = cob_prediction
|
||||
logger.info(f"✅ COB RL prediction for {symbol}: {cob_prediction} (quality: {cob_input.data_quality_score:.2f})")
|
||||
logger.info(f" COB RL prediction for {symbol}: {cob_prediction} (quality: {cob_input.data_quality_score:.2f})")
|
||||
except Exception as e:
|
||||
logger.error(f"COB RL prediction error for {symbol}: {e}")
|
||||
|
||||
@@ -243,7 +243,7 @@ class RealtimePredictionLoop:
|
||||
if transformer_data is not None and hasattr(self.orchestrator.transformer_model, 'predict'):
|
||||
transformer_prediction = self.orchestrator.transformer_model.predict(transformer_data)
|
||||
predictions['transformer'] = transformer_prediction
|
||||
logger.info(f"✅ Transformer prediction for {symbol}: {transformer_prediction} (quality: {transformer_input.data_quality_score:.2f})")
|
||||
logger.info(f" Transformer prediction for {symbol}: {transformer_prediction} (quality: {transformer_input.data_quality_score:.2f})")
|
||||
except Exception as e:
|
||||
logger.error(f"Transformer prediction error for {symbol}: {e}")
|
||||
|
||||
|
||||
@@ -811,7 +811,7 @@ class TradingExecutor:
|
||||
self.min_profitability_multiplier,
|
||||
self.profitability_reward_multiplier - self.profitability_adjustment_step
|
||||
)
|
||||
logger.info(f"⚠️ SUCCESS RATE LOW ({success_rate:.1%}) - Decreased profitability multiplier: {old_multiplier:.1f} → {self.profitability_reward_multiplier:.1f}")
|
||||
logger.info(f" SUCCESS RATE LOW ({success_rate:.1%}) - Decreased profitability multiplier: {old_multiplier:.1f} → {self.profitability_reward_multiplier:.1f}")
|
||||
|
||||
else:
|
||||
logger.debug(f"Success rate {success_rate:.1%} in acceptable range - keeping multiplier at {self.profitability_reward_multiplier:.1f}")
|
||||
|
||||
@@ -96,7 +96,7 @@ class UnifiedDataProviderExtension:
|
||||
logger.info("✓ Ingestion pipeline started")
|
||||
|
||||
self._initialized = True
|
||||
logger.info("✅ Unified storage system initialized successfully")
|
||||
logger.info(" Unified storage system initialized successfully")
|
||||
|
||||
return True
|
||||
|
||||
@@ -119,7 +119,7 @@ class UnifiedDataProviderExtension:
|
||||
logger.info("✓ Database connection closed")
|
||||
|
||||
self._initialized = False
|
||||
logger.info("✅ Unified storage system shutdown complete")
|
||||
logger.info(" Unified storage system shutdown complete")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error shutting down unified storage: {e}")
|
||||
|
||||
@@ -60,7 +60,7 @@ class UnifiedQueryableStorage:
|
||||
self.backend = get_timescale_storage(timescale_connection_string)
|
||||
if self.backend:
|
||||
self.backend_type = "timescale"
|
||||
logger.info("✅ Using TimescaleDB for queryable storage")
|
||||
logger.info(" Using TimescaleDB for queryable storage")
|
||||
except Exception as e:
|
||||
logger.warning(f"TimescaleDB not available: {e}")
|
||||
|
||||
@@ -69,7 +69,7 @@ class UnifiedQueryableStorage:
|
||||
try:
|
||||
self.backend = SQLiteQueryableStorage(sqlite_path)
|
||||
self.backend_type = "sqlite"
|
||||
logger.info("✅ Using SQLite for queryable storage (TimescaleDB fallback)")
|
||||
logger.info(" Using SQLite for queryable storage (TimescaleDB fallback)")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize SQLite storage: {e}")
|
||||
raise Exception("No queryable storage backend available")
|
||||
|
||||
@@ -26,14 +26,14 @@ def _market_state_to_rl_state(self, market_state: MarketState) -> np.ndarray:
|
||||
**Total Current Input: ~100 basic features (CRITICALLY INSUFFICIENT)**
|
||||
|
||||
### What's Missing from Current Implementation:
|
||||
- ❌ **300s of raw tick data** (0 features vs required 3000+ features)
|
||||
- ❌ **Multi-timeframe OHLCV data** (4 basic prices vs required 9600+ features)
|
||||
- ❌ **BTC reference data** (0 features vs required 2400+ features)
|
||||
- ❌ **CNN hidden layer features** (0 features vs required 512 features)
|
||||
- ❌ **CNN predictions** (0 features vs required 16 features)
|
||||
- ❌ **Pivot point data** (0 features vs required 250+ features)
|
||||
- ❌ **Momentum detection from ticks** (completely missing)
|
||||
- ❌ **Market regime analysis** (basic vs sophisticated analysis)
|
||||
- **300s of raw tick data** (0 features vs required 3000+ features)
|
||||
- **Multi-timeframe OHLCV data** (4 basic prices vs required 9600+ features)
|
||||
- **BTC reference data** (0 features vs required 2400+ features)
|
||||
- **CNN hidden layer features** (0 features vs required 512 features)
|
||||
- **CNN predictions** (0 features vs required 16 features)
|
||||
- **Pivot point data** (0 features vs required 250+ features)
|
||||
- **Momentum detection from ticks** (completely missing)
|
||||
- **Market regime analysis** (basic vs sophisticated analysis)
|
||||
|
||||
## What Dashboard Currently Shows
|
||||
|
||||
@@ -52,37 +52,37 @@ This shows the data is being **collected** but **NOT being fed to the RL model**
|
||||
### ETH Data Requirements:
|
||||
1. **300s max of raw ticks data** → ~3000 features
|
||||
- Important for detecting single big moves and momentum
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
2. **300s of 1s OHLCV data (5 min)** → 2400 features
|
||||
- 300 bars × 8 features (OHLC + volume + indicators)
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
3. **300 OHLCV + indicators bars for each timeframe** → 7200 features
|
||||
- 1m: 300 bars × 8 features = 2400
|
||||
- 1h: 300 bars × 8 features = 2400
|
||||
- 1d: 300 bars × 8 features = 2400
|
||||
- Currently: ~4 basic price features ❌
|
||||
- Currently: ~4 basic price features
|
||||
|
||||
### BTC Reference Data:
|
||||
4. **BTC data for all timeframes** → 2400 features
|
||||
- Same structure as ETH for correlation analysis
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
### CNN Integration:
|
||||
5. **CNN hidden layer features** → 512 features
|
||||
- Last hidden layers where patterns are learned
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
6. **CNN predictions for each timeframe** → 16 features
|
||||
- 1s, 1m, 1h, 1d predictions (4 timeframes × 4 outputs)
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
### Pivot Points:
|
||||
7. **Williams Market Structure pivot points** → 250+ features
|
||||
- 5-level recursive pivot point calculation
|
||||
- Standard pivot points for all timeframes
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
## Total Required vs Current
|
||||
|
||||
@@ -113,12 +113,12 @@ This explains why RL performance may be poor - the model is essentially "blind"
|
||||
|
||||
## Solution Implementation Status
|
||||
|
||||
✅ **Already Created**:
|
||||
**Already Created**:
|
||||
- `training/enhanced_rl_state_builder.py` - Implements comprehensive state building
|
||||
- `training/williams_market_structure.py` - Williams pivot point system
|
||||
- `docs/RL_TRAINING_AUDIT_AND_IMPROVEMENTS.md` - Complete improvement plan
|
||||
|
||||
⚠️ **Next Steps**:
|
||||
**Next Steps**:
|
||||
1. Integrate the enhanced state builder into the current RL training pipeline
|
||||
2. Update MarketState class to include all required data
|
||||
3. Connect tick cache and OHLCV data to state builder
|
||||
|
||||
@@ -34,7 +34,7 @@ comprehensive_state = self.state_builder.build_rl_state(
|
||||
|
||||
## Real Data Sources Integration
|
||||
|
||||
### 1. Tick Data (300s Window) ✅
|
||||
### 1. Tick Data (300s Window)
|
||||
**Source**: Your dashboard's "Tick Cache: 129 ticks"
|
||||
```python
|
||||
def _get_recent_tick_data_for_rl(self, symbol: str, seconds: int = 300):
|
||||
@@ -43,7 +43,7 @@ def _get_recent_tick_data_for_rl(self, symbol: str, seconds: int = 300):
|
||||
# Converts to RL format with momentum detection
|
||||
```
|
||||
|
||||
### 2. Multi-timeframe OHLCV ✅
|
||||
### 2. Multi-timeframe OHLCV
|
||||
**Source**: Your dashboard's "1s Bars: 128 bars" + historical data
|
||||
```python
|
||||
def _get_multiframe_ohlcv_for_rl(self, symbol: str):
|
||||
@@ -51,21 +51,21 @@ def _get_multiframe_ohlcv_for_rl(self, symbol: str):
|
||||
# Gets real OHLCV data with technical indicators (RSI, MACD, BB, etc.)
|
||||
```
|
||||
|
||||
### 3. BTC Reference Data ✅
|
||||
### 3. BTC Reference Data
|
||||
**Source**: Same data provider, BTC/USDT symbol
|
||||
```python
|
||||
btc_reference_data = self._get_multiframe_ohlcv_for_rl('BTC/USDT')
|
||||
# Provides correlation analysis for ETH decisions
|
||||
```
|
||||
|
||||
### 4. Williams Market Structure ✅
|
||||
### 4. Williams Market Structure
|
||||
**Source**: Calculated from real 1m OHLCV data
|
||||
```python
|
||||
pivot_data = self.williams_structure.calculate_recursive_pivot_points(ohlc_array)
|
||||
# Implements your specified 5-level recursive pivot system
|
||||
```
|
||||
|
||||
### 5. CNN Integration Framework ✅
|
||||
### 5. CNN Integration Framework
|
||||
**Ready for**: CNN hidden features and predictions
|
||||
```python
|
||||
def _get_cnn_features_for_rl(self, symbol: str):
|
||||
@@ -75,21 +75,21 @@ def _get_cnn_features_for_rl(self, symbol: str):
|
||||
|
||||
## Files Modified/Created
|
||||
|
||||
### 1. Enhanced RL Trainer (`training/enhanced_rl_trainer.py`) ✅
|
||||
### 1. Enhanced RL Trainer (`training/enhanced_rl_trainer.py`)
|
||||
- **Replaced** mock `_market_state_to_rl_state()` with comprehensive state building
|
||||
- **Integrated** with EnhancedRLStateBuilder (~13,400 features)
|
||||
- **Connected** to real data sources (ticks, OHLCV, BTC reference)
|
||||
- **Added** Williams pivot point calculation
|
||||
- **Enhanced** agent initialization with larger state space (1024 hidden units)
|
||||
|
||||
### 2. Enhanced Orchestrator (`core/enhanced_orchestrator.py`) ✅
|
||||
### 2. Enhanced Orchestrator (`core/enhanced_orchestrator.py`)
|
||||
- **Expanded** MarketState class with comprehensive data fields
|
||||
- **Added** real tick data extraction methods
|
||||
- **Implemented** multi-timeframe OHLCV processing with technical indicators
|
||||
- **Integrated** market microstructure analysis
|
||||
- **Added** CNN feature extraction framework
|
||||
|
||||
### 3. Comprehensive Launcher (`run_enhanced_rl_training.py`) ✅
|
||||
### 3. Comprehensive Launcher (`run_enhanced_rl_training.py`)
|
||||
- **Created** complete training system launcher
|
||||
- **Implements** real-time data collection and verification
|
||||
- **Provides** comprehensive training loop with real market states
|
||||
@@ -122,7 +122,7 @@ Stream: LIVE + Technical Indic. + CNN features + Pivots
|
||||
|
||||
## New Capabilities Unlocked
|
||||
|
||||
### 1. Momentum Detection 🚀
|
||||
### 1. Momentum Detection
|
||||
- **Real tick-level analysis** for detecting single big moves
|
||||
- **Volume-weighted price momentum** from 300s of tick data
|
||||
- **Market microstructure patterns** (order flow, tick frequency)
|
||||
@@ -188,16 +188,16 @@ The system includes comprehensive data quality monitoring:
|
||||
|
||||
## Integration Status
|
||||
|
||||
✅ **COMPLETE**: Real tick data integration (300s window)
|
||||
✅ **COMPLETE**: Multi-timeframe OHLCV processing
|
||||
✅ **COMPLETE**: BTC reference data integration
|
||||
✅ **COMPLETE**: Williams Market Structure implementation
|
||||
✅ **COMPLETE**: Technical indicators (RSI, MACD, BB, ATR)
|
||||
✅ **COMPLETE**: Market microstructure analysis
|
||||
✅ **COMPLETE**: Comprehensive state building (~13,400 features)
|
||||
✅ **COMPLETE**: Real-time training loop
|
||||
✅ **COMPLETE**: Data quality monitoring
|
||||
⚠️ **FRAMEWORK READY**: CNN hidden feature extraction (when CNN models available)
|
||||
**COMPLETE**: Real tick data integration (300s window)
|
||||
**COMPLETE**: Multi-timeframe OHLCV processing
|
||||
**COMPLETE**: BTC reference data integration
|
||||
**COMPLETE**: Williams Market Structure implementation
|
||||
**COMPLETE**: Technical indicators (RSI, MACD, BB, ATR)
|
||||
**COMPLETE**: Market microstructure analysis
|
||||
**COMPLETE**: Comprehensive state building (~13,400 features)
|
||||
**COMPLETE**: Real-time training loop
|
||||
**COMPLETE**: Data quality monitoring
|
||||
**FRAMEWORK READY**: CNN hidden feature extraction (when CNN models available)
|
||||
|
||||
## Performance Impact Expected
|
||||
|
||||
|
||||
@@ -4,9 +4,9 @@
|
||||
|
||||
The unified data storage system has been successfully implemented and integrated into the existing DataProvider.
|
||||
|
||||
## ✅ Completed Tasks (8 out of 10)
|
||||
## Completed Tasks (8 out of 10)
|
||||
|
||||
### Task 1: TimescaleDB Schema and Infrastructure ✅
|
||||
### Task 1: TimescaleDB Schema and Infrastructure
|
||||
**Files:**
|
||||
- `core/unified_storage_schema.py` - Schema manager with migrations
|
||||
- `scripts/setup_unified_storage.py` - Automated setup script
|
||||
@@ -19,7 +19,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- Compression policies (>80% compression)
|
||||
- Retention policies (30 days to 2 years)
|
||||
|
||||
### Task 2: Data Models and Validation ✅
|
||||
### Task 2: Data Models and Validation
|
||||
**Files:**
|
||||
- `core/unified_data_models.py` - Data structures
|
||||
- `core/unified_data_validator.py` - Validation logic
|
||||
@@ -30,7 +30,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- `OHLCVCandle`, `TradeEvent` - Individual data types
|
||||
- Comprehensive validation and sanitization
|
||||
|
||||
### Task 3: Cache Layer ✅
|
||||
### Task 3: Cache Layer
|
||||
**Files:**
|
||||
- `core/unified_cache_manager.py` - In-memory caching
|
||||
|
||||
@@ -41,7 +41,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- Automatic eviction
|
||||
- Statistics tracking
|
||||
|
||||
### Task 4: Database Connection and Query Layer ✅
|
||||
### Task 4: Database Connection and Query Layer
|
||||
**Files:**
|
||||
- `core/unified_database_manager.py` - Connection pool and queries
|
||||
|
||||
@@ -52,7 +52,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- <100ms query latency
|
||||
- Multi-timeframe support
|
||||
|
||||
### Task 5: Data Ingestion Pipeline ✅
|
||||
### Task 5: Data Ingestion Pipeline
|
||||
**Files:**
|
||||
- `core/unified_ingestion_pipeline.py` - Real-time ingestion
|
||||
|
||||
@@ -63,7 +63,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- >1000 ops/sec throughput
|
||||
- Error handling and retry logic
|
||||
|
||||
### Task 6: Unified Data Provider API ✅
|
||||
### Task 6: Unified Data Provider API
|
||||
**Files:**
|
||||
- `core/unified_data_provider_extension.py` - Main API
|
||||
|
||||
@@ -74,10 +74,10 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- Order book data access
|
||||
- Statistics tracking
|
||||
|
||||
### Task 7: Data Migration System ✅
|
||||
### Task 7: Data Migration System
|
||||
**Status:** Skipped (decided to drop existing Parquet data)
|
||||
|
||||
### Task 8: Integration with Existing DataProvider ✅
|
||||
### Task 8: Integration with Existing DataProvider
|
||||
**Files:**
|
||||
- `core/data_provider.py` - Updated with unified storage methods
|
||||
- `docs/UNIFIED_STORAGE_INTEGRATION.md` - Integration guide
|
||||
@@ -115,27 +115,27 @@ The unified data storage system has been successfully implemented and integrated
|
||||
└──────────────┘ └──────────────┘
|
||||
```
|
||||
|
||||
## 🚀 Key Features
|
||||
## Key Features
|
||||
|
||||
### Performance
|
||||
- ✅ Cache reads: <10ms
|
||||
- ✅ Database queries: <100ms
|
||||
- ✅ Ingestion: >1000 ops/sec
|
||||
- ✅ Compression: >80%
|
||||
- Cache reads: <10ms
|
||||
- Database queries: <100ms
|
||||
- Ingestion: >1000 ops/sec
|
||||
- Compression: >80%
|
||||
|
||||
### Reliability
|
||||
- ✅ Data validation
|
||||
- ✅ Error handling
|
||||
- ✅ Health monitoring
|
||||
- ✅ Statistics tracking
|
||||
- ✅ Automatic reconnection
|
||||
- Data validation
|
||||
- Error handling
|
||||
- Health monitoring
|
||||
- Statistics tracking
|
||||
- Automatic reconnection
|
||||
|
||||
### Usability
|
||||
- ✅ Single endpoint for all data
|
||||
- ✅ Automatic routing (cache vs database)
|
||||
- ✅ Type-safe interfaces
|
||||
- ✅ Backward compatible
|
||||
- ✅ Easy to integrate
|
||||
- Single endpoint for all data
|
||||
- Automatic routing (cache vs database)
|
||||
- Type-safe interfaces
|
||||
- Backward compatible
|
||||
- Easy to integrate
|
||||
|
||||
## 📝 Quick Start
|
||||
|
||||
@@ -302,9 +302,9 @@ print(f"Ingestion rate: {stats['ingestion']['total_ingested']}")
|
||||
### Check Health
|
||||
```python
|
||||
if data_provider.is_unified_storage_enabled():
|
||||
print("✅ Unified storage is running")
|
||||
print(" Unified storage is running")
|
||||
else:
|
||||
print("❌ Unified storage is not enabled")
|
||||
print(" Unified storage is not enabled")
|
||||
```
|
||||
|
||||
## 🚧 Remaining Tasks (Optional)
|
||||
@@ -323,12 +323,12 @@ else:
|
||||
|
||||
## 🎉 Success Metrics
|
||||
|
||||
✅ **Completed**: 8 out of 10 major tasks (80%)
|
||||
✅ **Core Functionality**: 100% complete
|
||||
✅ **Integration**: Seamless with existing code
|
||||
✅ **Performance**: Meets all targets
|
||||
✅ **Documentation**: Comprehensive guides
|
||||
✅ **Examples**: Working code samples
|
||||
**Completed**: 8 out of 10 major tasks (80%)
|
||||
**Core Functionality**: 100% complete
|
||||
**Integration**: Seamless with existing code
|
||||
**Performance**: Meets all targets
|
||||
**Documentation**: Comprehensive guides
|
||||
**Examples**: Working code samples
|
||||
|
||||
## 🙏 Next Steps
|
||||
|
||||
@@ -349,7 +349,7 @@ For issues or questions:
|
||||
|
||||
---
|
||||
|
||||
**Status**: ✅ Production Ready
|
||||
**Status**: Production Ready
|
||||
**Version**: 1.0.0
|
||||
**Last Updated**: 2024
|
||||
**Completion**: 80% (8/10 tasks)
|
||||
|
||||
@@ -6,11 +6,11 @@ The unified storage system has been integrated into the existing `DataProvider`
|
||||
|
||||
## Key Features
|
||||
|
||||
✅ **Single Endpoint**: One method for all data access
|
||||
✅ **Automatic Routing**: Cache for real-time, database for historical
|
||||
✅ **Backward Compatible**: All existing methods still work
|
||||
✅ **Opt-In**: Only enabled when explicitly initialized
|
||||
✅ **Fast**: <10ms cache reads, <100ms database queries
|
||||
**Single Endpoint**: One method for all data access
|
||||
**Automatic Routing**: Cache for real-time, database for historical
|
||||
**Backward Compatible**: All existing methods still work
|
||||
**Opt-In**: Only enabled when explicitly initialized
|
||||
**Fast**: <10ms cache reads, <100ms database queries
|
||||
|
||||
## Quick Start
|
||||
|
||||
@@ -27,9 +27,9 @@ data_provider = DataProvider()
|
||||
async def setup():
|
||||
success = await data_provider.enable_unified_storage()
|
||||
if success:
|
||||
print("✅ Unified storage enabled!")
|
||||
print(" Unified storage enabled!")
|
||||
else:
|
||||
print("❌ Failed to enable unified storage")
|
||||
print(" Failed to enable unified storage")
|
||||
|
||||
asyncio.run(setup())
|
||||
```
|
||||
|
||||
@@ -250,12 +250,12 @@ python test_fifo_queues.py
|
||||
```
|
||||
|
||||
**Test Coverage**:
|
||||
- ✅ FIFO queue operations (add, retrieve, status)
|
||||
- ✅ Data queue filling with multiple timeframes
|
||||
- ✅ BaseDataInput building from queues
|
||||
- ✅ Consistent feature vector size (always 7850)
|
||||
- ✅ Thread safety under concurrent access
|
||||
- ✅ Minimum data requirement validation
|
||||
- FIFO queue operations (add, retrieve, status)
|
||||
- Data queue filling with multiple timeframes
|
||||
- BaseDataInput building from queues
|
||||
- Consistent feature vector size (always 7850)
|
||||
- Thread safety under concurrent access
|
||||
- Minimum data requirement validation
|
||||
|
||||
## Monitoring
|
||||
|
||||
|
||||
@@ -73,9 +73,9 @@ def generate_reports_example():
|
||||
print(f"\nBatch Results:")
|
||||
for symbol, data in results.items():
|
||||
if data:
|
||||
print(f"✅ {symbol}: ${data.current_price:,.2f} (RSI: {data.current_rsi_7:.1f})")
|
||||
print(f" {symbol}: ${data.current_price:,.2f} (RSI: {data.current_rsi_7:.1f})")
|
||||
else:
|
||||
print(f"❌ {symbol}: Failed to get data")
|
||||
print(f" {symbol}: Failed to get data")
|
||||
|
||||
return True
|
||||
|
||||
|
||||
@@ -30,10 +30,10 @@ async def example_realtime_data():
|
||||
success = await data_provider.enable_unified_storage()
|
||||
|
||||
if not success:
|
||||
print("❌ Failed to enable unified storage")
|
||||
print(" Failed to enable unified storage")
|
||||
return
|
||||
|
||||
print("✅ Unified storage enabled")
|
||||
print(" Unified storage enabled")
|
||||
|
||||
# Get latest real-time data
|
||||
print("\n2. Getting latest real-time data...")
|
||||
@@ -261,11 +261,11 @@ async def main():
|
||||
await example_statistics()
|
||||
|
||||
print("\n" + "="*60)
|
||||
print("✅ All examples completed successfully!")
|
||||
print(" All examples completed successfully!")
|
||||
print("="*60 + "\n")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n❌ Error running examples: {e}")
|
||||
print(f"\n Error running examples: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
@@ -92,12 +92,12 @@ gogo2/
|
||||
|
||||
## Data Sources
|
||||
|
||||
### ✅ Approved Sources
|
||||
### Approved Sources
|
||||
- Binance API (real-time and historical)
|
||||
- Cached real market data
|
||||
- TimescaleDB with real data
|
||||
|
||||
### ❌ Prohibited Sources
|
||||
### Prohibited Sources
|
||||
- Synthetic data generation
|
||||
- Random data simulation
|
||||
- Mock market conditions
|
||||
@@ -228,4 +228,4 @@ This project is for educational and research purposes. Use real market data resp
|
||||
|
||||
---
|
||||
|
||||
**⚠️ REMEMBER: This system's integrity depends on using only real market data. No exceptions.**
|
||||
** REMEMBER: This system's integrity depends on using only real market data. No exceptions.**
|
||||
|
||||
@@ -7,32 +7,32 @@ echo ""
|
||||
# Check if AMD GPU devices are available
|
||||
echo "Checking AMD GPU devices..."
|
||||
if [[ -e /dev/kfd ]]; then
|
||||
echo "✅ /dev/kfd (AMD GPU compute) is available"
|
||||
echo " /dev/kfd (AMD GPU compute) is available"
|
||||
else
|
||||
echo "❌ /dev/kfd not found - AMD GPU compute not available"
|
||||
echo " /dev/kfd not found - AMD GPU compute not available"
|
||||
fi
|
||||
|
||||
if [[ -e /dev/dri/renderD128 ]] || [[ -e /dev/dri/card0 ]]; then
|
||||
echo "✅ /dev/dri (AMD GPU graphics) is available"
|
||||
echo " /dev/dri (AMD GPU graphics) is available"
|
||||
else
|
||||
echo "❌ /dev/dri not found - AMD GPU graphics not available"
|
||||
echo " /dev/dri not found - AMD GPU graphics not available"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Checking user groups..."
|
||||
if groups | grep -q video; then
|
||||
echo "✅ User is in 'video' group for GPU access"
|
||||
echo " User is in 'video' group for GPU access"
|
||||
else
|
||||
echo "⚠️ User is not in 'video' group - may need: sudo usermod -aG video $USER"
|
||||
echo " User is not in 'video' group - may need: sudo usermod -aG video $USER"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Testing Docker with AMD GPU..."
|
||||
# Test if docker can access AMD GPU devices
|
||||
if docker run --rm --device /dev/kfd:/dev/kfd --device /dev/dri:/dev/dri alpine ls /dev/kfd /dev/dri 2>/dev/null | grep -q kfd; then
|
||||
echo "✅ Docker can access AMD GPU devices"
|
||||
echo " Docker can access AMD GPU devices"
|
||||
else
|
||||
echo "❌ Docker cannot access AMD GPU devices"
|
||||
echo " Docker cannot access AMD GPU devices"
|
||||
echo " Try: sudo chmod 666 /dev/kfd /dev/dri/*"
|
||||
fi
|
||||
|
||||
|
||||
@@ -43,9 +43,9 @@ def test_filter_by_time_range():
|
||||
print(f"Last: {result.index[-1]} (should be minute 49)")
|
||||
|
||||
if result.index[-1] < end_time:
|
||||
print("✅ PASS: Last candle is before end_time")
|
||||
print(" PASS: Last candle is before end_time")
|
||||
else:
|
||||
print("❌ FAIL: Last candle is NOT before end_time")
|
||||
print(" FAIL: Last candle is NOT before end_time")
|
||||
|
||||
# Test 2: Direction 'after'
|
||||
print("\n" + "-" * 80)
|
||||
@@ -62,9 +62,9 @@ def test_filter_by_time_range():
|
||||
print(f"Last: {result.index[-1]} (should be minute 60)")
|
||||
|
||||
if result.index[0] > start_time:
|
||||
print("✅ PASS: First candle is after start_time")
|
||||
print(" PASS: First candle is after start_time")
|
||||
else:
|
||||
print("❌ FAIL: First candle is NOT after start_time")
|
||||
print(" FAIL: First candle is NOT after start_time")
|
||||
|
||||
# Test 3: Direction 'latest' (default)
|
||||
print("\n" + "-" * 80)
|
||||
@@ -77,9 +77,9 @@ def test_filter_by_time_range():
|
||||
print(f"Last: {result.index[-1]} (should be minute 99)")
|
||||
|
||||
if result.index[-1] == df.index[-1]:
|
||||
print("✅ PASS: Got most recent candles")
|
||||
print(" PASS: Got most recent candles")
|
||||
else:
|
||||
print("❌ FAIL: Did NOT get most recent candles")
|
||||
print(" FAIL: Did NOT get most recent candles")
|
||||
|
||||
print("\n" + "=" * 80)
|
||||
print("All Tests Complete")
|
||||
|
||||
@@ -33,11 +33,11 @@ try:
|
||||
from core.duckdb_storage import DuckDBStorage
|
||||
|
||||
storage = DuckDBStorage()
|
||||
print(f"✅ DuckDB initialized: {storage.db_path}")
|
||||
print(f" DuckDB initialized: {storage.db_path}")
|
||||
print(f" Parquet directory: {storage.parquet_dir}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
@@ -54,13 +54,13 @@ try:
|
||||
init_time = time.time() - start_time
|
||||
|
||||
if data_provider.duckdb_storage:
|
||||
print(f"✅ DataProvider has DuckDB storage")
|
||||
print(f" DataProvider has DuckDB storage")
|
||||
print(f" Initialization time: {init_time:.2f}s")
|
||||
else:
|
||||
print(f"⚠️ DataProvider missing DuckDB storage")
|
||||
print(f" DataProvider missing DuckDB storage")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -83,13 +83,13 @@ try:
|
||||
fetch_time = time.time() - start_time
|
||||
|
||||
if df is not None and not df.empty:
|
||||
print(f"✅ Fetched {len(df)} candles in {fetch_time:.2f}s")
|
||||
print(f" Fetched {len(df)} candles in {fetch_time:.2f}s")
|
||||
print(f" Data automatically stored in DuckDB")
|
||||
else:
|
||||
print(f"⚠️ No data fetched")
|
||||
print(f" No data fetched")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -110,13 +110,13 @@ try:
|
||||
query_time = time.time() - start_time
|
||||
|
||||
if df is not None and not df.empty:
|
||||
print(f"✅ Retrieved {len(df)} candles in {query_time:.3f}s")
|
||||
print(f" Retrieved {len(df)} candles in {query_time:.3f}s")
|
||||
print(f" Query speed: {query_time*1000:.1f}ms")
|
||||
else:
|
||||
print(f"⚠️ No data in DuckDB yet")
|
||||
print(f" No data in DuckDB yet")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -133,15 +133,15 @@ try:
|
||||
""")
|
||||
|
||||
if not result.empty:
|
||||
print(f"✅ SQL query successful")
|
||||
print(f" SQL query successful")
|
||||
print("\nCache metadata:")
|
||||
for _, row in result.iterrows():
|
||||
print(f" {row['symbol']} {row['timeframe']}: {row['candle_count']:,} candles")
|
||||
else:
|
||||
print(f"⚠️ No metadata yet")
|
||||
print(f" No metadata yet")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -161,10 +161,10 @@ try:
|
||||
for stat in ohlcv_stats:
|
||||
print(f" {stat['symbol']} {stat['timeframe']}: {stat['candle_count']:,} candles")
|
||||
|
||||
print(f"✅ Statistics retrieved successfully")
|
||||
print(f" Statistics retrieved successfully")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -178,15 +178,15 @@ try:
|
||||
ann_manager = AnnotationManager()
|
||||
|
||||
if ann_manager.duckdb_storage:
|
||||
print(f"✅ Annotation manager has DuckDB storage")
|
||||
print(f" Annotation manager has DuckDB storage")
|
||||
else:
|
||||
print(f"⚠️ Annotation manager missing DuckDB storage")
|
||||
print(f" Annotation manager missing DuckDB storage")
|
||||
|
||||
annotations = ann_manager.get_annotations()
|
||||
print(f" Existing annotations: {len(annotations)}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAIL: {e}")
|
||||
print(f" FAIL: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
@@ -195,7 +195,7 @@ print("\n" + "=" * 80)
|
||||
print("TEST SUMMARY")
|
||||
print("=" * 80)
|
||||
|
||||
print("\n✅ DuckDB Integration:")
|
||||
print("\n DuckDB Integration:")
|
||||
print(" - Storage initialized: WORKING")
|
||||
print(" - DataProvider integration: WORKING")
|
||||
print(" - Data storage: WORKING")
|
||||
@@ -224,5 +224,5 @@ print(" 3. Query data with SQL for analysis")
|
||||
print(" 4. Enjoy unified storage!")
|
||||
|
||||
print("\n" + "=" * 80)
|
||||
print("✅ ALL TESTS COMPLETED")
|
||||
print(" ALL TESTS COMPLETED")
|
||||
print("=" * 80)
|
||||
|
||||
@@ -39,10 +39,10 @@ def test_backend_data_loading():
|
||||
)
|
||||
|
||||
if initial_df is None or initial_df.empty:
|
||||
print("❌ FAILED: No initial data loaded")
|
||||
print(" FAILED: No initial data loaded")
|
||||
return
|
||||
|
||||
print(f"✅ Loaded {len(initial_df)} initial candles")
|
||||
print(f" Loaded {len(initial_df)} initial candles")
|
||||
print(f" First timestamp: {initial_df.index[0]}")
|
||||
print(f" Last timestamp: {initial_df.index[-1]}")
|
||||
|
||||
@@ -59,20 +59,20 @@ def test_backend_data_loading():
|
||||
)
|
||||
|
||||
if older_df is None or older_df.empty:
|
||||
print("❌ FAILED: No older data loaded")
|
||||
print(" FAILED: No older data loaded")
|
||||
print(" This might mean:")
|
||||
print(" - No data exists before this timestamp in DuckDB")
|
||||
print(" - The query is not working correctly")
|
||||
else:
|
||||
print(f"✅ Loaded {len(older_df)} older candles")
|
||||
print(f" Loaded {len(older_df)} older candles")
|
||||
print(f" First timestamp: {older_df.index[0]}")
|
||||
print(f" Last timestamp: {older_df.index[-1]}")
|
||||
|
||||
# Check if older data is actually older
|
||||
if older_df.index[-1] < first_timestamp:
|
||||
print(f"✅ Data is correctly older (last older candle: {older_df.index[-1]} < first initial: {first_timestamp})")
|
||||
print(f" Data is correctly older (last older candle: {older_df.index[-1]} < first initial: {first_timestamp})")
|
||||
else:
|
||||
print(f"❌ WARNING: Data is NOT older! Last older: {older_df.index[-1]} >= first initial: {first_timestamp}")
|
||||
print(f" WARNING: Data is NOT older! Last older: {older_df.index[-1]} >= first initial: {first_timestamp}")
|
||||
|
||||
# Test 3: Load newer data (after last timestamp)
|
||||
print(f"\n5. Loading newer data AFTER {initial_df.index[-1]}...")
|
||||
@@ -87,17 +87,17 @@ def test_backend_data_loading():
|
||||
)
|
||||
|
||||
if newer_df is None or newer_df.empty:
|
||||
print("❌ No newer data loaded (this is expected if we're at the latest data)")
|
||||
print(" No newer data loaded (this is expected if we're at the latest data)")
|
||||
else:
|
||||
print(f"✅ Loaded {len(newer_df)} newer candles")
|
||||
print(f" Loaded {len(newer_df)} newer candles")
|
||||
print(f" First timestamp: {newer_df.index[0]}")
|
||||
print(f" Last timestamp: {newer_df.index[-1]}")
|
||||
|
||||
# Check if newer data is actually newer
|
||||
if newer_df.index[0] > last_timestamp:
|
||||
print(f"✅ Data is correctly newer (first newer candle: {newer_df.index[0]} > last initial: {last_timestamp})")
|
||||
print(f" Data is correctly newer (first newer candle: {newer_df.index[0]} > last initial: {last_timestamp})")
|
||||
else:
|
||||
print(f"❌ WARNING: Data is NOT newer! First newer: {newer_df.index[0]} <= last initial: {last_timestamp}")
|
||||
print(f" WARNING: Data is NOT newer! First newer: {newer_df.index[0]} <= last initial: {last_timestamp}")
|
||||
|
||||
# Test 4: Check DuckDB directly
|
||||
print(f"\n6. Checking DuckDB storage directly...")
|
||||
@@ -110,7 +110,7 @@ def test_backend_data_loading():
|
||||
print(f" Total candles in DuckDB: {total_count}")
|
||||
|
||||
if total_count == 0:
|
||||
print(" ❌ No data in DuckDB! Need to fetch from API first.")
|
||||
print(" No data in DuckDB! Need to fetch from API first.")
|
||||
else:
|
||||
# Get time range
|
||||
query = """
|
||||
@@ -129,7 +129,7 @@ def test_backend_data_loading():
|
||||
print(f" Time range: {min_ts} to {max_ts}")
|
||||
print(f" Duration: {max_ts - min_ts}")
|
||||
else:
|
||||
print(" ❌ DuckDB storage not available")
|
||||
print(" DuckDB storage not available")
|
||||
|
||||
print("\n" + "=" * 80)
|
||||
print("Test Complete")
|
||||
|
||||
@@ -37,10 +37,10 @@ def test_pivot_levels():
|
||||
pivot_levels = data_provider.get_williams_pivot_levels(symbol, base_timeframe='1m', limit=5000)
|
||||
|
||||
if not pivot_levels:
|
||||
logger.error(f"❌ NO PIVOT LEVELS for {symbol}")
|
||||
logger.error(f" NO PIVOT LEVELS for {symbol}")
|
||||
return False
|
||||
|
||||
logger.info(f"✅ Found {len(pivot_levels)} pivot levels")
|
||||
logger.info(f" Found {len(pivot_levels)} pivot levels")
|
||||
|
||||
for level_num in sorted(pivot_levels.keys()):
|
||||
trend_level = pivot_levels[level_num]
|
||||
@@ -61,10 +61,10 @@ def test_pivot_levels():
|
||||
actual_levels = set(pivot_levels.keys())
|
||||
|
||||
if expected_levels.issubset(actual_levels):
|
||||
logger.info("✅ ALL 5 PIVOT LEVELS PRESENT!")
|
||||
logger.info(" ALL 5 PIVOT LEVELS PRESENT!")
|
||||
else:
|
||||
missing = expected_levels - actual_levels
|
||||
logger.warning(f"❌ MISSING LEVELS: {missing}")
|
||||
logger.warning(f" MISSING LEVELS: {missing}")
|
||||
|
||||
return True
|
||||
|
||||
@@ -79,6 +79,6 @@ if __name__ == "__main__":
|
||||
if success:
|
||||
print("\n🎉 Pivot levels test completed!")
|
||||
else:
|
||||
print("\n❌ Pivot levels test failed!")
|
||||
print("\n Pivot levels test failed!")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
@@ -24,13 +24,13 @@ def test_training():
|
||||
# Step 1: Initialize components
|
||||
print("\n1. Initializing components...")
|
||||
data_provider = DataProvider()
|
||||
print(" ✅ DataProvider initialized")
|
||||
print(" DataProvider initialized")
|
||||
|
||||
orchestrator = TradingOrchestrator(
|
||||
data_provider=data_provider,
|
||||
enhanced_rl_training=True
|
||||
)
|
||||
print(" ✅ Orchestrator initialized")
|
||||
print(" Orchestrator initialized")
|
||||
|
||||
# Step 2: Initialize ML models
|
||||
print("\n2. Initializing ML models...")
|
||||
@@ -40,25 +40,25 @@ def test_training():
|
||||
available_models = []
|
||||
if hasattr(orchestrator, 'rl_agent') and orchestrator.rl_agent:
|
||||
available_models.append('DQN')
|
||||
print(" ✅ DQN model available")
|
||||
print(" DQN model available")
|
||||
if hasattr(orchestrator, 'cnn_model') and orchestrator.cnn_model:
|
||||
available_models.append('CNN')
|
||||
print(" ✅ CNN model available")
|
||||
print(" CNN model available")
|
||||
if hasattr(orchestrator, 'primary_transformer') and orchestrator.primary_transformer:
|
||||
available_models.append('Transformer')
|
||||
print(" ✅ Transformer model available")
|
||||
print(" Transformer model available")
|
||||
|
||||
# Check if trainer is available
|
||||
if hasattr(orchestrator, 'primary_transformer_trainer') and orchestrator.primary_transformer_trainer:
|
||||
trainer = orchestrator.primary_transformer_trainer
|
||||
print(f" ✅ Transformer trainer available: {type(trainer).__name__}")
|
||||
print(f" Transformer trainer available: {type(trainer).__name__}")
|
||||
|
||||
# List available methods
|
||||
methods = [m for m in dir(trainer) if not m.startswith('_') and callable(getattr(trainer, m))]
|
||||
print(f" 📋 Trainer methods: {', '.join(methods[:10])}...")
|
||||
|
||||
if not available_models:
|
||||
print(" ❌ No models available!")
|
||||
print(" No models available!")
|
||||
return
|
||||
|
||||
print(f"\n Available models: {', '.join(available_models)}")
|
||||
@@ -66,16 +66,16 @@ def test_training():
|
||||
# Step 3: Initialize training adapter
|
||||
print("\n3. Initializing training adapter...")
|
||||
training_adapter = RealTrainingAdapter(orchestrator, data_provider)
|
||||
print(" ✅ Training adapter initialized")
|
||||
print(" Training adapter initialized")
|
||||
|
||||
# Step 4: Load test cases
|
||||
print("\n4. Loading test cases...")
|
||||
annotation_manager = AnnotationManager()
|
||||
test_cases = annotation_manager.get_all_test_cases()
|
||||
print(f" ✅ Loaded {len(test_cases)} test cases")
|
||||
print(f" Loaded {len(test_cases)} test cases")
|
||||
|
||||
if len(test_cases) == 0:
|
||||
print(" ⚠️ No test cases available - create some annotations first!")
|
||||
print(" No test cases available - create some annotations first!")
|
||||
return
|
||||
|
||||
# Step 5: Start training
|
||||
@@ -87,7 +87,7 @@ def test_training():
|
||||
model_name='Transformer',
|
||||
test_cases=test_cases
|
||||
)
|
||||
print(f" ✅ Training started: {training_id}")
|
||||
print(f" Training started: {training_id}")
|
||||
|
||||
# Step 6: Monitor training progress
|
||||
print("\n6. Monitoring training progress...")
|
||||
@@ -98,25 +98,25 @@ def test_training():
|
||||
progress = training_adapter.get_training_progress(training_id)
|
||||
|
||||
if progress['status'] == 'completed':
|
||||
print(f"\n ✅ Training completed!")
|
||||
print(f"\n Training completed!")
|
||||
print(f" Final loss: {progress['final_loss']:.6f}")
|
||||
print(f" Accuracy: {progress['accuracy']:.2%}")
|
||||
print(f" Duration: {progress['duration_seconds']:.2f}s")
|
||||
break
|
||||
elif progress['status'] == 'failed':
|
||||
print(f"\n ❌ Training failed!")
|
||||
print(f"\n Training failed!")
|
||||
print(f" Error: {progress['error']}")
|
||||
break
|
||||
elif progress['status'] == 'running':
|
||||
print(f" Epoch {progress['current_epoch']}/{progress['total_epochs']}, Loss: {progress['current_loss']:.6f}", end='\r')
|
||||
else:
|
||||
print(f"\n ⚠️ Training still running after 30 seconds")
|
||||
print(f"\n Training still running after 30 seconds")
|
||||
progress = training_adapter.get_training_progress(training_id)
|
||||
print(f" Status: {progress['status']}")
|
||||
print(f" Epoch: {progress['current_epoch']}/{progress['total_epochs']}")
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ Training failed with exception: {e}")
|
||||
print(f" Training failed with exception: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
@@ -216,7 +216,7 @@ class CleanTradingDashboard:
|
||||
# Connect dashboard to orchestrator for COB data updates
|
||||
if hasattr(self.orchestrator, 'set_dashboard'):
|
||||
self.orchestrator.set_dashboard(self)
|
||||
logger.info("✅ Dashboard connected to orchestrator for COB data updates")
|
||||
logger.info(" Dashboard connected to orchestrator for COB data updates")
|
||||
|
||||
# Start orchestrator's real-time processing to ensure COB data flows
|
||||
if hasattr(self.orchestrator, 'start_continuous_trading'):
|
||||
@@ -234,7 +234,7 @@ class CleanTradingDashboard:
|
||||
|
||||
trading_thread = threading.Thread(target=start_orchestrator_trading, daemon=True)
|
||||
trading_thread.start()
|
||||
logger.info("✅ Started orchestrator real-time processing for COB data")
|
||||
logger.info(" Started orchestrator real-time processing for COB data")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to start orchestrator trading: {e}")
|
||||
|
||||
@@ -835,7 +835,7 @@ class CleanTradingDashboard:
|
||||
if success:
|
||||
# Create callbacks for the new model
|
||||
self._create_model_toggle_callbacks(model_name)
|
||||
logger.info(f"✅ Successfully added model dynamically: {model_name}")
|
||||
logger.info(f" Successfully added model dynamically: {model_name}")
|
||||
return True
|
||||
else:
|
||||
logger.error(f"Failed to register model with orchestrator: {model_name}")
|
||||
@@ -861,7 +861,7 @@ class CleanTradingDashboard:
|
||||
if hasattr(self.orchestrator, 'model_registry'):
|
||||
self.orchestrator.model_registry.unregister_model(model_name)
|
||||
|
||||
logger.info(f"✅ Successfully removed model dynamically: {model_name}")
|
||||
logger.info(f" Successfully removed model dynamically: {model_name}")
|
||||
return True
|
||||
else:
|
||||
logger.error("No orchestrator available for dynamic model removal")
|
||||
@@ -7839,19 +7839,19 @@ class CleanTradingDashboard:
|
||||
self._force_dashboard_refresh()
|
||||
|
||||
logger.info("=" * 60)
|
||||
logger.info("✅ SESSION CLEAR COMPLETED SUCCESSFULLY")
|
||||
logger.info(" SESSION CLEAR COMPLETED SUCCESSFULLY")
|
||||
logger.info("=" * 60)
|
||||
logger.info("📊 Session P&L reset to $0.00")
|
||||
logger.info("📈 All positions closed")
|
||||
logger.info("📋 Trade history cleared")
|
||||
logger.info("🎯 Success rate calculations reset")
|
||||
logger.info("📈 Model performance metrics reset")
|
||||
logger.info("🔄 All caches cleared")
|
||||
logger.info(" All caches cleared")
|
||||
logger.info("📁 Trade log files cleared")
|
||||
logger.info("=" * 60)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error clearing session: {e}")
|
||||
logger.error(f" Error clearing session: {e}")
|
||||
|
||||
def _close_all_positions(self):
|
||||
"""Close all held positions"""
|
||||
@@ -7894,10 +7894,10 @@ class CleanTradingDashboard:
|
||||
if hasattr(self, 'realized_pnl'):
|
||||
self.realized_pnl = 0.0
|
||||
|
||||
logger.info("✅ All positions closed and PnL reset")
|
||||
logger.info(" All positions closed and PnL reset")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error closing positions: {e}")
|
||||
logger.error(f" Error closing positions: {e}")
|
||||
|
||||
def _clear_trade_logs(self):
|
||||
"""Clear all trade log files"""
|
||||
@@ -7960,27 +7960,27 @@ class CleanTradingDashboard:
|
||||
# Use the orchestrator's built-in clear method if available
|
||||
if hasattr(self.orchestrator, 'clear_session_data'):
|
||||
self.orchestrator.clear_session_data()
|
||||
logger.info("✅ Used orchestrator's built-in clear_session_data method")
|
||||
logger.info(" Used orchestrator's built-in clear_session_data method")
|
||||
else:
|
||||
# Fallback to manual clearing
|
||||
if hasattr(self.orchestrator, 'recent_decisions'):
|
||||
self.orchestrator.recent_decisions = {}
|
||||
logger.info("✅ Cleared recent_decisions")
|
||||
logger.info(" Cleared recent_decisions")
|
||||
|
||||
if hasattr(self.orchestrator, 'recent_dqn_predictions'):
|
||||
for symbol in self.orchestrator.recent_dqn_predictions:
|
||||
self.orchestrator.recent_dqn_predictions[symbol].clear()
|
||||
logger.info("✅ Cleared recent_dqn_predictions")
|
||||
logger.info(" Cleared recent_dqn_predictions")
|
||||
|
||||
if hasattr(self.orchestrator, 'recent_cnn_predictions'):
|
||||
for symbol in self.orchestrator.recent_cnn_predictions:
|
||||
self.orchestrator.recent_cnn_predictions[symbol].clear()
|
||||
logger.info("✅ Cleared recent_cnn_predictions")
|
||||
logger.info(" Cleared recent_cnn_predictions")
|
||||
|
||||
if hasattr(self.orchestrator, 'prediction_accuracy_history'):
|
||||
for symbol in self.orchestrator.prediction_accuracy_history:
|
||||
self.orchestrator.prediction_accuracy_history[symbol].clear()
|
||||
logger.info("✅ Cleared prediction_accuracy_history")
|
||||
logger.info(" Cleared prediction_accuracy_history")
|
||||
|
||||
logger.info("Orchestrator state cleared (fallback method)")
|
||||
|
||||
@@ -7994,7 +7994,7 @@ class CleanTradingDashboard:
|
||||
'accuracy': 0.0,
|
||||
'price_predictions': {'total': 0, 'accurate': 0, 'avg_error': 0.0}
|
||||
}
|
||||
logger.info("✅ Reset model_performance tracking (accuracy calculations)")
|
||||
logger.info(" Reset model_performance tracking (accuracy calculations)")
|
||||
|
||||
# Clear model statistics if they exist
|
||||
if hasattr(self.orchestrator, 'model_statistics'):
|
||||
@@ -8005,7 +8005,7 @@ class CleanTradingDashboard:
|
||||
self.orchestrator.model_statistics[model_name].correct = 0
|
||||
if hasattr(self.orchestrator.model_statistics[model_name], 'total'):
|
||||
self.orchestrator.model_statistics[model_name].total = 0
|
||||
logger.info("✅ Reset model_statistics accuracy tracking")
|
||||
logger.info(" Reset model_statistics accuracy tracking")
|
||||
|
||||
# Clear any cached performance metrics
|
||||
if hasattr(self.orchestrator, '_cached_performance'):
|
||||
@@ -8014,7 +8014,7 @@ class CleanTradingDashboard:
|
||||
if hasattr(self.orchestrator, '_last_performance_update'):
|
||||
self.orchestrator._last_performance_update = {}
|
||||
|
||||
logger.info("✅ Orchestrator state and performance metrics cleared completely")
|
||||
logger.info(" Orchestrator state and performance metrics cleared completely")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error clearing orchestrator state: {e}")
|
||||
@@ -8035,11 +8035,11 @@ class CleanTradingDashboard:
|
||||
# Clear trade history and records (critical for success rate calculations)
|
||||
if hasattr(self.trading_executor, 'trade_history'):
|
||||
self.trading_executor.trade_history = []
|
||||
logger.info("✅ Cleared trade_history")
|
||||
logger.info(" Cleared trade_history")
|
||||
|
||||
if hasattr(self.trading_executor, 'trade_records'):
|
||||
self.trading_executor.trade_records = []
|
||||
logger.info("✅ Cleared trade_records (used for success rate)")
|
||||
logger.info(" Cleared trade_records (used for success rate)")
|
||||
|
||||
# Clear P&L and fee tracking
|
||||
if hasattr(self.trading_executor, 'session_pnl'):
|
||||
@@ -8060,19 +8060,19 @@ class CleanTradingDashboard:
|
||||
# Clear consecutive loss tracking (affects success rate calculations)
|
||||
if hasattr(self.trading_executor, 'consecutive_losses'):
|
||||
self.trading_executor.consecutive_losses = 0
|
||||
logger.info("✅ Reset consecutive_losses counter")
|
||||
logger.info(" Reset consecutive_losses counter")
|
||||
|
||||
# Reset safety feature state
|
||||
if hasattr(self.trading_executor, 'safety_triggered'):
|
||||
self.trading_executor.safety_triggered = False
|
||||
logger.info("✅ Reset safety_triggered flag")
|
||||
logger.info(" Reset safety_triggered flag")
|
||||
|
||||
# Reset profitability multiplier to default
|
||||
if hasattr(self.trading_executor, 'profitability_reward_multiplier'):
|
||||
self.trading_executor.profitability_reward_multiplier = getattr(
|
||||
self.trading_executor, 'default_profitability_multiplier', 1.0
|
||||
)
|
||||
logger.info("✅ Reset profitability_reward_multiplier")
|
||||
logger.info(" Reset profitability_reward_multiplier")
|
||||
|
||||
# Clear any cached statistics
|
||||
if hasattr(self.trading_executor, '_cached_stats'):
|
||||
@@ -8081,7 +8081,7 @@ class CleanTradingDashboard:
|
||||
if hasattr(self.trading_executor, '_last_stats_update'):
|
||||
self.trading_executor._last_stats_update = None
|
||||
|
||||
logger.info("✅ Trading executor state cleared completely")
|
||||
logger.info(" Trading executor state cleared completely")
|
||||
logger.info("📊 Success rate calculations will start fresh")
|
||||
|
||||
except Exception as e:
|
||||
@@ -8127,7 +8127,7 @@ class CleanTradingDashboard:
|
||||
logger.info("💾 Storing Decision Fusion model...")
|
||||
# Add storage logic here
|
||||
except Exception as e:
|
||||
logger.warning(f"❌ Failed to store Decision Fusion model: {e}")
|
||||
logger.warning(f" Failed to store Decision Fusion model: {e}")
|
||||
|
||||
# 5. Verification Step - Try to load checkpoints to verify they work
|
||||
logger.info("🔍 Verifying stored checkpoints...")
|
||||
@@ -8153,14 +8153,14 @@ class CleanTradingDashboard:
|
||||
if result:
|
||||
file_path, metadata = result
|
||||
verification_results.append((model_name, True, f"Verified: {metadata.checkpoint_id}"))
|
||||
logger.info(f"✅ Verified {model_name} checkpoint: {metadata.checkpoint_id}")
|
||||
logger.info(f" Verified {model_name} checkpoint: {metadata.checkpoint_id}")
|
||||
else:
|
||||
verification_results.append((model_name, False, "Checkpoint not found after save"))
|
||||
logger.warning(f"⚠️ Could not verify {model_name} checkpoint")
|
||||
logger.warning(f" Could not verify {model_name} checkpoint")
|
||||
|
||||
except Exception as e:
|
||||
verification_results.append((model_name, False, f"Verification failed: {str(e)}"))
|
||||
logger.warning(f"⚠️ Failed to verify {model_name}: {e}")
|
||||
logger.warning(f" Failed to verify {model_name}: {e}")
|
||||
|
||||
# 6. Store session metadata
|
||||
try:
|
||||
@@ -8203,18 +8203,18 @@ class CleanTradingDashboard:
|
||||
|
||||
if stored_models:
|
||||
logger.info(f"📊 STORAGE SUMMARY:")
|
||||
logger.info(f" ✅ Models stored: {successful_stores}")
|
||||
logger.info(f" ✅ Verifications passed: {successful_verifications}/{len(verification_results)}")
|
||||
logger.info(f" Models stored: {successful_stores}")
|
||||
logger.info(f" Verifications passed: {successful_verifications}/{len(verification_results)}")
|
||||
logger.info(f" 📋 Models: {[name for name, _ in stored_models]}")
|
||||
|
||||
# Update button display with success info
|
||||
return True
|
||||
else:
|
||||
logger.warning("❌ No models were stored - no models available")
|
||||
logger.warning(" No models were stored - no models available")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error in store all models operation: {e}")
|
||||
logger.error(f" Error in store all models operation: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
@@ -8355,7 +8355,7 @@ class CleanTradingDashboard:
|
||||
)
|
||||
|
||||
if success:
|
||||
logger.info("✅ Unified storage system enabled for real-time training")
|
||||
logger.info(" Unified storage system enabled for real-time training")
|
||||
|
||||
# Get initial statistics
|
||||
stats = self.data_provider.get_unified_storage_stats()
|
||||
@@ -8364,7 +8364,7 @@ class CleanTradingDashboard:
|
||||
logger.info(f" Database: Connected and ready")
|
||||
logger.info(f" Ingestion: Pipeline active")
|
||||
else:
|
||||
logger.warning("⚠️ Unified storage initialization failed, using legacy data access")
|
||||
logger.warning(" Unified storage initialization failed, using legacy data access")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not enable unified storage: {e}")
|
||||
@@ -8955,10 +8955,10 @@ class CleanTradingDashboard:
|
||||
"""Initialize enhanced COB integration with WebSocket status monitoring"""
|
||||
try:
|
||||
if not COB_INTEGRATION_AVAILABLE:
|
||||
logger.warning("⚠️ COB integration not available - WebSocket status will show as unavailable")
|
||||
logger.warning(" COB integration not available - WebSocket status will show as unavailable")
|
||||
return
|
||||
|
||||
logger.info("🚀 Initializing Enhanced COB Integration with WebSocket monitoring")
|
||||
logger.info(" Initializing Enhanced COB Integration with WebSocket monitoring")
|
||||
|
||||
# Initialize COB integration
|
||||
self.cob_integration = COBIntegration(
|
||||
@@ -8978,15 +8978,15 @@ class CleanTradingDashboard:
|
||||
loop.run_until_complete(self.cob_integration.start())
|
||||
loop.run_forever()
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error in COB integration thread: {e}")
|
||||
logger.error(f" Error in COB integration thread: {e}")
|
||||
|
||||
cob_thread = threading.Thread(target=start_cob_integration, daemon=True)
|
||||
cob_thread.start()
|
||||
|
||||
logger.info("✅ Enhanced COB Integration started with WebSocket monitoring")
|
||||
logger.info(" Enhanced COB Integration started with WebSocket monitoring")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error initializing Enhanced COB Integration: {e}")
|
||||
logger.error(f" Error initializing Enhanced COB Integration: {e}")
|
||||
|
||||
def update_cob_data_from_orchestrator(self, symbol: str, cob_data: Dict):
|
||||
"""Update COB cache from orchestrator data - called by orchestrator"""
|
||||
@@ -9098,7 +9098,7 @@ class CleanTradingDashboard:
|
||||
logger.debug(f"📊 Enhanced COB update for {symbol}: {websocket_status} via {source}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error handling enhanced COB update for {symbol}: {e}")
|
||||
logger.error(f" Error handling enhanced COB update for {symbol}: {e}")
|
||||
|
||||
def get_cob_websocket_status(self) -> Dict[str, Any]:
|
||||
"""Get COB WebSocket status for dashboard display"""
|
||||
@@ -9158,13 +9158,13 @@ class CleanTradingDashboard:
|
||||
status_summary['warning_message'] = None
|
||||
elif connected_count + fallback_count == total_symbols:
|
||||
status_summary['overall_status'] = 'partial_fallback'
|
||||
status_summary['warning_message'] = f'⚠️ {fallback_count} symbol(s) using REST fallback - WebSocket connection failed'
|
||||
status_summary['warning_message'] = f' {fallback_count} symbol(s) using REST fallback - WebSocket connection failed'
|
||||
elif fallback_count > 0:
|
||||
status_summary['overall_status'] = 'degraded'
|
||||
status_summary['warning_message'] = f'⚠️ COB WebSocket degraded - {error_count} error(s), {fallback_count} fallback(s)'
|
||||
status_summary['warning_message'] = f' COB WebSocket degraded - {error_count} error(s), {fallback_count} fallback(s)'
|
||||
else:
|
||||
status_summary['overall_status'] = 'error'
|
||||
status_summary['warning_message'] = '❌ COB WebSocket failed - All connections down'
|
||||
status_summary['warning_message'] = ' COB WebSocket failed - All connections down'
|
||||
|
||||
# Set last update time and calculate overall update rate
|
||||
last_updates = [cache.get('last_update', 0) for cache in self.cob_cache.values()]
|
||||
@@ -9178,7 +9178,7 @@ class CleanTradingDashboard:
|
||||
return status_summary
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error getting COB WebSocket status: {e}")
|
||||
logger.error(f" Error getting COB WebSocket status: {e}")
|
||||
return {
|
||||
'overall_status': 'error',
|
||||
'warning_message': f'Error getting status: {e}',
|
||||
@@ -9385,7 +9385,7 @@ class CleanTradingDashboard:
|
||||
'executed': False,
|
||||
'blocked': False,
|
||||
'manual': False,
|
||||
'cob_snapshot': cob_snapshot, # ✅ STORE FULL INFERENCE SNAPSHOT
|
||||
'cob_snapshot': cob_snapshot, # STORE FULL INFERENCE SNAPSHOT
|
||||
'inference_data': {
|
||||
'imbalance': imbalance,
|
||||
'abs_imbalance': abs_imbalance,
|
||||
@@ -9439,7 +9439,7 @@ class CleanTradingDashboard:
|
||||
'history': self.cob_data_history[symbol][-15:], # Last 15 seconds
|
||||
'bucketed_data': self.cob_bucketed_data[symbol],
|
||||
'cumulative_imbalance': cumulative_imbalance,
|
||||
'cob_imbalance_ma': self.cob_imbalance_ma.get(symbol, {}), # ✅ ADD MOVING AVERAGES
|
||||
'cob_imbalance_ma': self.cob_imbalance_ma.get(symbol, {}), # ADD MOVING AVERAGES
|
||||
'timestamp': cob_snapshot['timestamp'],
|
||||
'stats': cob_snapshot.get('stats', {}),
|
||||
'bids': cob_snapshot.get('bids', []),
|
||||
@@ -9895,7 +9895,7 @@ class CleanTradingDashboard:
|
||||
logger.info(f"🔗 Running chained inference for {symbol} with {n_steps} steps")
|
||||
|
||||
if self.orchestrator is None:
|
||||
logger.warning("❌ No orchestrator available for chained inference")
|
||||
logger.warning(" No orchestrator available for chained inference")
|
||||
return
|
||||
|
||||
# Trigger initial predictions by calling make_trading_decision
|
||||
@@ -9918,7 +9918,7 @@ class CleanTradingDashboard:
|
||||
logger.info(f"🔗 Chained inference completed for {symbol}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error in chained inference: {e}")
|
||||
logger.error(f" Error in chained inference: {e}")
|
||||
|
||||
# Run the async inference
|
||||
try:
|
||||
@@ -9934,7 +9934,7 @@ class CleanTradingDashboard:
|
||||
asyncio.run(_run_inference())
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Chained inference failed: {e}")
|
||||
logger.error(f" Chained inference failed: {e}")
|
||||
|
||||
def run_server(self, host='127.0.0.1', port=8050, debug=False):
|
||||
"""Start the Dash server"""
|
||||
@@ -10024,7 +10024,7 @@ class CleanTradingDashboard:
|
||||
try:
|
||||
if self.orchestrator and hasattr(self.orchestrator, 'add_decision_callback'):
|
||||
self.orchestrator.add_decision_callback(self._on_trading_decision)
|
||||
logger.info("✅ Orchestrator decision callback registered")
|
||||
logger.info(" Orchestrator decision callback registered")
|
||||
else:
|
||||
logger.warning("Orchestrator not available or doesn't support callbacks")
|
||||
except Exception as e:
|
||||
@@ -10205,7 +10205,7 @@ class CleanTradingDashboard:
|
||||
self.decision_fusion_inference_enabled = toggle_states['decision_fusion'].get('inference_enabled', True)
|
||||
self.decision_fusion_training_enabled = toggle_states['decision_fusion'].get('training_enabled', True)
|
||||
|
||||
logger.info(f"✅ UI state synced from orchestrator: DQN(inf:{self.dqn_inference_enabled}, train:{self.dqn_training_enabled}), CNN(inf:{self.cnn_inference_enabled}, train:{self.cnn_training_enabled}), COB_RL(inf:{getattr(self, 'cob_rl_inference_enabled', True)}, train:{getattr(self, 'cob_rl_training_enabled', True)}), Decision_Fusion(inf:{getattr(self, 'decision_fusion_inference_enabled', True)}, train:{getattr(self, 'decision_fusion_training_enabled', True)})")
|
||||
logger.info(f" UI state synced from orchestrator: DQN(inf:{self.dqn_inference_enabled}, train:{self.dqn_training_enabled}), CNN(inf:{self.cnn_inference_enabled}, train:{self.cnn_training_enabled}), COB_RL(inf:{getattr(self, 'cob_rl_inference_enabled', True)}, train:{getattr(self, 'cob_rl_training_enabled', True)}), Decision_Fusion(inf:{getattr(self, 'decision_fusion_inference_enabled', True)}, train:{getattr(self, 'decision_fusion_training_enabled', True)})")
|
||||
else:
|
||||
logger.debug("Orchestrator not available for UI state sync, using defaults")
|
||||
except Exception as e:
|
||||
|
||||
@@ -553,7 +553,7 @@
|
||||
console.log(`🔌 Unhandled WebSocket message type:`, data.type);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('❌ Error parsing WebSocket message:', error);
|
||||
console.error(' Error parsing WebSocket message:', error);
|
||||
console.error('Raw message:', event.data);
|
||||
}
|
||||
};
|
||||
@@ -584,7 +584,7 @@
|
||||
}
|
||||
|
||||
// Debug logging to understand data structure
|
||||
console.log(`🔄 ${symbol} COB Update:`, {
|
||||
console.log(` ${symbol} COB Update:`, {
|
||||
source: data.type || 'Unknown',
|
||||
bidsCount: (cobData.bids || []).length,
|
||||
asksCount: (cobData.asks || []).length,
|
||||
@@ -602,7 +602,7 @@
|
||||
const asks = cobData.asks || [];
|
||||
|
||||
if (bids.length <= 1 && asks.length <= 1) {
|
||||
console.log(`⚠️ Insufficient WS depth for ${symbol}, fetching REST data...`);
|
||||
console.log(` Insufficient WS depth for ${symbol}, fetching REST data...`);
|
||||
fetchRESTData(symbol);
|
||||
return;
|
||||
}
|
||||
@@ -630,7 +630,7 @@
|
||||
drawMiniChart(prefix, cobData.ohlcv);
|
||||
}, 100);
|
||||
} else {
|
||||
console.log(`❌ ${symbol}: No valid OHLCV data in update (${cobData.ohlcv ? cobData.ohlcv.length : 'null'} items)`);
|
||||
console.log(` ${symbol}: No valid OHLCV data in update (${cobData.ohlcv ? cobData.ohlcv.length : 'null'} items)`);
|
||||
|
||||
// Try to get OHLCV from REST endpoint
|
||||
console.log(`🔍 Trying to fetch OHLCV from REST for ${symbol}...`);
|
||||
@@ -671,13 +671,13 @@
|
||||
});
|
||||
|
||||
if (data.data) {
|
||||
console.log(`✅ Processing REST fallback data for ${symbol}`);
|
||||
console.log(` Processing REST fallback data for ${symbol}`);
|
||||
handleCOBUpdate({symbol: symbol, data: data.data, type: 'rest_api'});
|
||||
} else {
|
||||
console.error(`❌ No data in REST response for ${symbol}`);
|
||||
console.error(` No data in REST response for ${symbol}`);
|
||||
}
|
||||
})
|
||||
.catch(error => console.error(`❌ Error fetching REST data for ${symbol}:`, error));
|
||||
.catch(error => console.error(` Error fetching REST data for ${symbol}:`, error));
|
||||
}
|
||||
|
||||
function trackImbalance(symbol, imbalance) {
|
||||
@@ -1070,7 +1070,7 @@
|
||||
try {
|
||||
const canvas = document.getElementById(`${prefix}-mini-chart`);
|
||||
if (!canvas) {
|
||||
console.error(`❌ Canvas not found for ${prefix}-mini-chart`);
|
||||
console.error(` Canvas not found for ${prefix}-mini-chart`);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -1090,14 +1090,14 @@
|
||||
ctx.font = '12px Courier New';
|
||||
ctx.textAlign = 'center';
|
||||
ctx.fillText('No Data', width / 2, height / 2);
|
||||
console.log(`❌ ${prefix}: No OHLCV data to draw`);
|
||||
console.log(` ${prefix}: No OHLCV data to draw`);
|
||||
return;
|
||||
}
|
||||
|
||||
// Validate OHLCV data structure
|
||||
const firstCandle = ohlcvArray[0];
|
||||
if (!firstCandle || typeof firstCandle.open === 'undefined' || typeof firstCandle.close === 'undefined') {
|
||||
console.error(`❌ ${prefix}: Invalid OHLCV data structure:`, firstCandle);
|
||||
console.error(` ${prefix}: Invalid OHLCV data structure:`, firstCandle);
|
||||
ctx.fillStyle = '#ff6b6b';
|
||||
ctx.font = '10px Courier New';
|
||||
ctx.textAlign = 'center';
|
||||
@@ -1118,7 +1118,7 @@
|
||||
console.log(`📊 ${prefix} price range: $${minPrice.toFixed(2)} - $${maxPrice.toFixed(2)} (range: $${priceRange.toFixed(2)})`);
|
||||
|
||||
if (priceRange === 0) {
|
||||
console.warn(`⚠️ ${prefix}: Zero price range, cannot draw chart`);
|
||||
console.warn(` ${prefix}: Zero price range, cannot draw chart`);
|
||||
ctx.fillStyle = '#ff6b6b';
|
||||
ctx.font = '10px Courier New';
|
||||
ctx.textAlign = 'center';
|
||||
@@ -1187,10 +1187,10 @@
|
||||
ctx.setLineDash([]);
|
||||
}
|
||||
|
||||
console.log(`✅ Successfully drew ${prefix} chart with ${ohlcvArray.length} candles`);
|
||||
console.log(` Successfully drew ${prefix} chart with ${ohlcvArray.length} candles`);
|
||||
|
||||
} catch (error) {
|
||||
console.error(`❌ Error drawing mini chart for ${prefix}:`, error);
|
||||
console.error(` Error drawing mini chart for ${prefix}:`, error);
|
||||
console.error(error.stack);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user