remove emojis from console

This commit is contained in:
Dobromir Popov
2025-10-25 16:35:08 +03:00
parent 5aa4925cff
commit b8f54e61fa
75 changed files with 828 additions and 828 deletions

View File

@@ -34,7 +34,7 @@ comprehensive_state = self.state_builder.build_rl_state(
## Real Data Sources Integration
### 1. Tick Data (300s Window)
### 1. Tick Data (300s Window)
**Source**: Your dashboard's "Tick Cache: 129 ticks"
```python
def _get_recent_tick_data_for_rl(self, symbol: str, seconds: int = 300):
@@ -43,7 +43,7 @@ def _get_recent_tick_data_for_rl(self, symbol: str, seconds: int = 300):
# Converts to RL format with momentum detection
```
### 2. Multi-timeframe OHLCV
### 2. Multi-timeframe OHLCV
**Source**: Your dashboard's "1s Bars: 128 bars" + historical data
```python
def _get_multiframe_ohlcv_for_rl(self, symbol: str):
@@ -51,21 +51,21 @@ def _get_multiframe_ohlcv_for_rl(self, symbol: str):
# Gets real OHLCV data with technical indicators (RSI, MACD, BB, etc.)
```
### 3. BTC Reference Data
### 3. BTC Reference Data
**Source**: Same data provider, BTC/USDT symbol
```python
btc_reference_data = self._get_multiframe_ohlcv_for_rl('BTC/USDT')
# Provides correlation analysis for ETH decisions
```
### 4. Williams Market Structure
### 4. Williams Market Structure
**Source**: Calculated from real 1m OHLCV data
```python
pivot_data = self.williams_structure.calculate_recursive_pivot_points(ohlc_array)
# Implements your specified 5-level recursive pivot system
```
### 5. CNN Integration Framework
### 5. CNN Integration Framework
**Ready for**: CNN hidden features and predictions
```python
def _get_cnn_features_for_rl(self, symbol: str):
@@ -75,21 +75,21 @@ def _get_cnn_features_for_rl(self, symbol: str):
## Files Modified/Created
### 1. Enhanced RL Trainer (`training/enhanced_rl_trainer.py`)
### 1. Enhanced RL Trainer (`training/enhanced_rl_trainer.py`)
- **Replaced** mock `_market_state_to_rl_state()` with comprehensive state building
- **Integrated** with EnhancedRLStateBuilder (~13,400 features)
- **Connected** to real data sources (ticks, OHLCV, BTC reference)
- **Added** Williams pivot point calculation
- **Enhanced** agent initialization with larger state space (1024 hidden units)
### 2. Enhanced Orchestrator (`core/enhanced_orchestrator.py`)
### 2. Enhanced Orchestrator (`core/enhanced_orchestrator.py`)
- **Expanded** MarketState class with comprehensive data fields
- **Added** real tick data extraction methods
- **Implemented** multi-timeframe OHLCV processing with technical indicators
- **Integrated** market microstructure analysis
- **Added** CNN feature extraction framework
### 3. Comprehensive Launcher (`run_enhanced_rl_training.py`)
### 3. Comprehensive Launcher (`run_enhanced_rl_training.py`)
- **Created** complete training system launcher
- **Implements** real-time data collection and verification
- **Provides** comprehensive training loop with real market states
@@ -122,7 +122,7 @@ Stream: LIVE + Technical Indic. + CNN features + Pivots
## New Capabilities Unlocked
### 1. Momentum Detection 🚀
### 1. Momentum Detection
- **Real tick-level analysis** for detecting single big moves
- **Volume-weighted price momentum** from 300s of tick data
- **Market microstructure patterns** (order flow, tick frequency)
@@ -188,16 +188,16 @@ The system includes comprehensive data quality monitoring:
## Integration Status
**COMPLETE**: Real tick data integration (300s window)
**COMPLETE**: Multi-timeframe OHLCV processing
**COMPLETE**: BTC reference data integration
**COMPLETE**: Williams Market Structure implementation
**COMPLETE**: Technical indicators (RSI, MACD, BB, ATR)
**COMPLETE**: Market microstructure analysis
**COMPLETE**: Comprehensive state building (~13,400 features)
**COMPLETE**: Real-time training loop
**COMPLETE**: Data quality monitoring
⚠️ **FRAMEWORK READY**: CNN hidden feature extraction (when CNN models available)
**COMPLETE**: Real tick data integration (300s window)
**COMPLETE**: Multi-timeframe OHLCV processing
**COMPLETE**: BTC reference data integration
**COMPLETE**: Williams Market Structure implementation
**COMPLETE**: Technical indicators (RSI, MACD, BB, ATR)
**COMPLETE**: Market microstructure analysis
**COMPLETE**: Comprehensive state building (~13,400 features)
**COMPLETE**: Real-time training loop
**COMPLETE**: Data quality monitoring
**FRAMEWORK READY**: CNN hidden feature extraction (when CNN models available)
## Performance Impact Expected