remove emojis from console
This commit is contained in:
@@ -26,14 +26,14 @@ def _market_state_to_rl_state(self, market_state: MarketState) -> np.ndarray:
|
||||
**Total Current Input: ~100 basic features (CRITICALLY INSUFFICIENT)**
|
||||
|
||||
### What's Missing from Current Implementation:
|
||||
- ❌ **300s of raw tick data** (0 features vs required 3000+ features)
|
||||
- ❌ **Multi-timeframe OHLCV data** (4 basic prices vs required 9600+ features)
|
||||
- ❌ **BTC reference data** (0 features vs required 2400+ features)
|
||||
- ❌ **CNN hidden layer features** (0 features vs required 512 features)
|
||||
- ❌ **CNN predictions** (0 features vs required 16 features)
|
||||
- ❌ **Pivot point data** (0 features vs required 250+ features)
|
||||
- ❌ **Momentum detection from ticks** (completely missing)
|
||||
- ❌ **Market regime analysis** (basic vs sophisticated analysis)
|
||||
- **300s of raw tick data** (0 features vs required 3000+ features)
|
||||
- **Multi-timeframe OHLCV data** (4 basic prices vs required 9600+ features)
|
||||
- **BTC reference data** (0 features vs required 2400+ features)
|
||||
- **CNN hidden layer features** (0 features vs required 512 features)
|
||||
- **CNN predictions** (0 features vs required 16 features)
|
||||
- **Pivot point data** (0 features vs required 250+ features)
|
||||
- **Momentum detection from ticks** (completely missing)
|
||||
- **Market regime analysis** (basic vs sophisticated analysis)
|
||||
|
||||
## What Dashboard Currently Shows
|
||||
|
||||
@@ -52,37 +52,37 @@ This shows the data is being **collected** but **NOT being fed to the RL model**
|
||||
### ETH Data Requirements:
|
||||
1. **300s max of raw ticks data** → ~3000 features
|
||||
- Important for detecting single big moves and momentum
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
2. **300s of 1s OHLCV data (5 min)** → 2400 features
|
||||
- 300 bars × 8 features (OHLC + volume + indicators)
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
3. **300 OHLCV + indicators bars for each timeframe** → 7200 features
|
||||
- 1m: 300 bars × 8 features = 2400
|
||||
- 1h: 300 bars × 8 features = 2400
|
||||
- 1d: 300 bars × 8 features = 2400
|
||||
- Currently: ~4 basic price features ❌
|
||||
- Currently: ~4 basic price features
|
||||
|
||||
### BTC Reference Data:
|
||||
4. **BTC data for all timeframes** → 2400 features
|
||||
- Same structure as ETH for correlation analysis
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
### CNN Integration:
|
||||
5. **CNN hidden layer features** → 512 features
|
||||
- Last hidden layers where patterns are learned
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
6. **CNN predictions for each timeframe** → 16 features
|
||||
- 1s, 1m, 1h, 1d predictions (4 timeframes × 4 outputs)
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
### Pivot Points:
|
||||
7. **Williams Market Structure pivot points** → 250+ features
|
||||
- 5-level recursive pivot point calculation
|
||||
- Standard pivot points for all timeframes
|
||||
- Currently: 0 features ❌
|
||||
- Currently: 0 features
|
||||
|
||||
## Total Required vs Current
|
||||
|
||||
@@ -113,12 +113,12 @@ This explains why RL performance may be poor - the model is essentially "blind"
|
||||
|
||||
## Solution Implementation Status
|
||||
|
||||
✅ **Already Created**:
|
||||
**Already Created**:
|
||||
- `training/enhanced_rl_state_builder.py` - Implements comprehensive state building
|
||||
- `training/williams_market_structure.py` - Williams pivot point system
|
||||
- `docs/RL_TRAINING_AUDIT_AND_IMPROVEMENTS.md` - Complete improvement plan
|
||||
|
||||
⚠️ **Next Steps**:
|
||||
**Next Steps**:
|
||||
1. Integrate the enhanced state builder into the current RL training pipeline
|
||||
2. Update MarketState class to include all required data
|
||||
3. Connect tick cache and OHLCV data to state builder
|
||||
|
||||
@@ -34,7 +34,7 @@ comprehensive_state = self.state_builder.build_rl_state(
|
||||
|
||||
## Real Data Sources Integration
|
||||
|
||||
### 1. Tick Data (300s Window) ✅
|
||||
### 1. Tick Data (300s Window)
|
||||
**Source**: Your dashboard's "Tick Cache: 129 ticks"
|
||||
```python
|
||||
def _get_recent_tick_data_for_rl(self, symbol: str, seconds: int = 300):
|
||||
@@ -43,7 +43,7 @@ def _get_recent_tick_data_for_rl(self, symbol: str, seconds: int = 300):
|
||||
# Converts to RL format with momentum detection
|
||||
```
|
||||
|
||||
### 2. Multi-timeframe OHLCV ✅
|
||||
### 2. Multi-timeframe OHLCV
|
||||
**Source**: Your dashboard's "1s Bars: 128 bars" + historical data
|
||||
```python
|
||||
def _get_multiframe_ohlcv_for_rl(self, symbol: str):
|
||||
@@ -51,21 +51,21 @@ def _get_multiframe_ohlcv_for_rl(self, symbol: str):
|
||||
# Gets real OHLCV data with technical indicators (RSI, MACD, BB, etc.)
|
||||
```
|
||||
|
||||
### 3. BTC Reference Data ✅
|
||||
### 3. BTC Reference Data
|
||||
**Source**: Same data provider, BTC/USDT symbol
|
||||
```python
|
||||
btc_reference_data = self._get_multiframe_ohlcv_for_rl('BTC/USDT')
|
||||
# Provides correlation analysis for ETH decisions
|
||||
```
|
||||
|
||||
### 4. Williams Market Structure ✅
|
||||
### 4. Williams Market Structure
|
||||
**Source**: Calculated from real 1m OHLCV data
|
||||
```python
|
||||
pivot_data = self.williams_structure.calculate_recursive_pivot_points(ohlc_array)
|
||||
# Implements your specified 5-level recursive pivot system
|
||||
```
|
||||
|
||||
### 5. CNN Integration Framework ✅
|
||||
### 5. CNN Integration Framework
|
||||
**Ready for**: CNN hidden features and predictions
|
||||
```python
|
||||
def _get_cnn_features_for_rl(self, symbol: str):
|
||||
@@ -75,21 +75,21 @@ def _get_cnn_features_for_rl(self, symbol: str):
|
||||
|
||||
## Files Modified/Created
|
||||
|
||||
### 1. Enhanced RL Trainer (`training/enhanced_rl_trainer.py`) ✅
|
||||
### 1. Enhanced RL Trainer (`training/enhanced_rl_trainer.py`)
|
||||
- **Replaced** mock `_market_state_to_rl_state()` with comprehensive state building
|
||||
- **Integrated** with EnhancedRLStateBuilder (~13,400 features)
|
||||
- **Connected** to real data sources (ticks, OHLCV, BTC reference)
|
||||
- **Added** Williams pivot point calculation
|
||||
- **Enhanced** agent initialization with larger state space (1024 hidden units)
|
||||
|
||||
### 2. Enhanced Orchestrator (`core/enhanced_orchestrator.py`) ✅
|
||||
### 2. Enhanced Orchestrator (`core/enhanced_orchestrator.py`)
|
||||
- **Expanded** MarketState class with comprehensive data fields
|
||||
- **Added** real tick data extraction methods
|
||||
- **Implemented** multi-timeframe OHLCV processing with technical indicators
|
||||
- **Integrated** market microstructure analysis
|
||||
- **Added** CNN feature extraction framework
|
||||
|
||||
### 3. Comprehensive Launcher (`run_enhanced_rl_training.py`) ✅
|
||||
### 3. Comprehensive Launcher (`run_enhanced_rl_training.py`)
|
||||
- **Created** complete training system launcher
|
||||
- **Implements** real-time data collection and verification
|
||||
- **Provides** comprehensive training loop with real market states
|
||||
@@ -122,7 +122,7 @@ Stream: LIVE + Technical Indic. + CNN features + Pivots
|
||||
|
||||
## New Capabilities Unlocked
|
||||
|
||||
### 1. Momentum Detection 🚀
|
||||
### 1. Momentum Detection
|
||||
- **Real tick-level analysis** for detecting single big moves
|
||||
- **Volume-weighted price momentum** from 300s of tick data
|
||||
- **Market microstructure patterns** (order flow, tick frequency)
|
||||
@@ -188,16 +188,16 @@ The system includes comprehensive data quality monitoring:
|
||||
|
||||
## Integration Status
|
||||
|
||||
✅ **COMPLETE**: Real tick data integration (300s window)
|
||||
✅ **COMPLETE**: Multi-timeframe OHLCV processing
|
||||
✅ **COMPLETE**: BTC reference data integration
|
||||
✅ **COMPLETE**: Williams Market Structure implementation
|
||||
✅ **COMPLETE**: Technical indicators (RSI, MACD, BB, ATR)
|
||||
✅ **COMPLETE**: Market microstructure analysis
|
||||
✅ **COMPLETE**: Comprehensive state building (~13,400 features)
|
||||
✅ **COMPLETE**: Real-time training loop
|
||||
✅ **COMPLETE**: Data quality monitoring
|
||||
⚠️ **FRAMEWORK READY**: CNN hidden feature extraction (when CNN models available)
|
||||
**COMPLETE**: Real tick data integration (300s window)
|
||||
**COMPLETE**: Multi-timeframe OHLCV processing
|
||||
**COMPLETE**: BTC reference data integration
|
||||
**COMPLETE**: Williams Market Structure implementation
|
||||
**COMPLETE**: Technical indicators (RSI, MACD, BB, ATR)
|
||||
**COMPLETE**: Market microstructure analysis
|
||||
**COMPLETE**: Comprehensive state building (~13,400 features)
|
||||
**COMPLETE**: Real-time training loop
|
||||
**COMPLETE**: Data quality monitoring
|
||||
**FRAMEWORK READY**: CNN hidden feature extraction (when CNN models available)
|
||||
|
||||
## Performance Impact Expected
|
||||
|
||||
|
||||
@@ -4,9 +4,9 @@
|
||||
|
||||
The unified data storage system has been successfully implemented and integrated into the existing DataProvider.
|
||||
|
||||
## ✅ Completed Tasks (8 out of 10)
|
||||
## Completed Tasks (8 out of 10)
|
||||
|
||||
### Task 1: TimescaleDB Schema and Infrastructure ✅
|
||||
### Task 1: TimescaleDB Schema and Infrastructure
|
||||
**Files:**
|
||||
- `core/unified_storage_schema.py` - Schema manager with migrations
|
||||
- `scripts/setup_unified_storage.py` - Automated setup script
|
||||
@@ -19,7 +19,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- Compression policies (>80% compression)
|
||||
- Retention policies (30 days to 2 years)
|
||||
|
||||
### Task 2: Data Models and Validation ✅
|
||||
### Task 2: Data Models and Validation
|
||||
**Files:**
|
||||
- `core/unified_data_models.py` - Data structures
|
||||
- `core/unified_data_validator.py` - Validation logic
|
||||
@@ -30,7 +30,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- `OHLCVCandle`, `TradeEvent` - Individual data types
|
||||
- Comprehensive validation and sanitization
|
||||
|
||||
### Task 3: Cache Layer ✅
|
||||
### Task 3: Cache Layer
|
||||
**Files:**
|
||||
- `core/unified_cache_manager.py` - In-memory caching
|
||||
|
||||
@@ -41,7 +41,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- Automatic eviction
|
||||
- Statistics tracking
|
||||
|
||||
### Task 4: Database Connection and Query Layer ✅
|
||||
### Task 4: Database Connection and Query Layer
|
||||
**Files:**
|
||||
- `core/unified_database_manager.py` - Connection pool and queries
|
||||
|
||||
@@ -52,7 +52,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- <100ms query latency
|
||||
- Multi-timeframe support
|
||||
|
||||
### Task 5: Data Ingestion Pipeline ✅
|
||||
### Task 5: Data Ingestion Pipeline
|
||||
**Files:**
|
||||
- `core/unified_ingestion_pipeline.py` - Real-time ingestion
|
||||
|
||||
@@ -63,7 +63,7 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- >1000 ops/sec throughput
|
||||
- Error handling and retry logic
|
||||
|
||||
### Task 6: Unified Data Provider API ✅
|
||||
### Task 6: Unified Data Provider API
|
||||
**Files:**
|
||||
- `core/unified_data_provider_extension.py` - Main API
|
||||
|
||||
@@ -74,10 +74,10 @@ The unified data storage system has been successfully implemented and integrated
|
||||
- Order book data access
|
||||
- Statistics tracking
|
||||
|
||||
### Task 7: Data Migration System ✅
|
||||
### Task 7: Data Migration System
|
||||
**Status:** Skipped (decided to drop existing Parquet data)
|
||||
|
||||
### Task 8: Integration with Existing DataProvider ✅
|
||||
### Task 8: Integration with Existing DataProvider
|
||||
**Files:**
|
||||
- `core/data_provider.py` - Updated with unified storage methods
|
||||
- `docs/UNIFIED_STORAGE_INTEGRATION.md` - Integration guide
|
||||
@@ -115,27 +115,27 @@ The unified data storage system has been successfully implemented and integrated
|
||||
└──────────────┘ └──────────────┘
|
||||
```
|
||||
|
||||
## 🚀 Key Features
|
||||
## Key Features
|
||||
|
||||
### Performance
|
||||
- ✅ Cache reads: <10ms
|
||||
- ✅ Database queries: <100ms
|
||||
- ✅ Ingestion: >1000 ops/sec
|
||||
- ✅ Compression: >80%
|
||||
- Cache reads: <10ms
|
||||
- Database queries: <100ms
|
||||
- Ingestion: >1000 ops/sec
|
||||
- Compression: >80%
|
||||
|
||||
### Reliability
|
||||
- ✅ Data validation
|
||||
- ✅ Error handling
|
||||
- ✅ Health monitoring
|
||||
- ✅ Statistics tracking
|
||||
- ✅ Automatic reconnection
|
||||
- Data validation
|
||||
- Error handling
|
||||
- Health monitoring
|
||||
- Statistics tracking
|
||||
- Automatic reconnection
|
||||
|
||||
### Usability
|
||||
- ✅ Single endpoint for all data
|
||||
- ✅ Automatic routing (cache vs database)
|
||||
- ✅ Type-safe interfaces
|
||||
- ✅ Backward compatible
|
||||
- ✅ Easy to integrate
|
||||
- Single endpoint for all data
|
||||
- Automatic routing (cache vs database)
|
||||
- Type-safe interfaces
|
||||
- Backward compatible
|
||||
- Easy to integrate
|
||||
|
||||
## 📝 Quick Start
|
||||
|
||||
@@ -302,9 +302,9 @@ print(f"Ingestion rate: {stats['ingestion']['total_ingested']}")
|
||||
### Check Health
|
||||
```python
|
||||
if data_provider.is_unified_storage_enabled():
|
||||
print("✅ Unified storage is running")
|
||||
print(" Unified storage is running")
|
||||
else:
|
||||
print("❌ Unified storage is not enabled")
|
||||
print(" Unified storage is not enabled")
|
||||
```
|
||||
|
||||
## 🚧 Remaining Tasks (Optional)
|
||||
@@ -323,12 +323,12 @@ else:
|
||||
|
||||
## 🎉 Success Metrics
|
||||
|
||||
✅ **Completed**: 8 out of 10 major tasks (80%)
|
||||
✅ **Core Functionality**: 100% complete
|
||||
✅ **Integration**: Seamless with existing code
|
||||
✅ **Performance**: Meets all targets
|
||||
✅ **Documentation**: Comprehensive guides
|
||||
✅ **Examples**: Working code samples
|
||||
**Completed**: 8 out of 10 major tasks (80%)
|
||||
**Core Functionality**: 100% complete
|
||||
**Integration**: Seamless with existing code
|
||||
**Performance**: Meets all targets
|
||||
**Documentation**: Comprehensive guides
|
||||
**Examples**: Working code samples
|
||||
|
||||
## 🙏 Next Steps
|
||||
|
||||
@@ -349,7 +349,7 @@ For issues or questions:
|
||||
|
||||
---
|
||||
|
||||
**Status**: ✅ Production Ready
|
||||
**Status**: Production Ready
|
||||
**Version**: 1.0.0
|
||||
**Last Updated**: 2024
|
||||
**Completion**: 80% (8/10 tasks)
|
||||
|
||||
@@ -6,11 +6,11 @@ The unified storage system has been integrated into the existing `DataProvider`
|
||||
|
||||
## Key Features
|
||||
|
||||
✅ **Single Endpoint**: One method for all data access
|
||||
✅ **Automatic Routing**: Cache for real-time, database for historical
|
||||
✅ **Backward Compatible**: All existing methods still work
|
||||
✅ **Opt-In**: Only enabled when explicitly initialized
|
||||
✅ **Fast**: <10ms cache reads, <100ms database queries
|
||||
**Single Endpoint**: One method for all data access
|
||||
**Automatic Routing**: Cache for real-time, database for historical
|
||||
**Backward Compatible**: All existing methods still work
|
||||
**Opt-In**: Only enabled when explicitly initialized
|
||||
**Fast**: <10ms cache reads, <100ms database queries
|
||||
|
||||
## Quick Start
|
||||
|
||||
@@ -27,9 +27,9 @@ data_provider = DataProvider()
|
||||
async def setup():
|
||||
success = await data_provider.enable_unified_storage()
|
||||
if success:
|
||||
print("✅ Unified storage enabled!")
|
||||
print(" Unified storage enabled!")
|
||||
else:
|
||||
print("❌ Failed to enable unified storage")
|
||||
print(" Failed to enable unified storage")
|
||||
|
||||
asyncio.run(setup())
|
||||
```
|
||||
|
||||
@@ -250,12 +250,12 @@ python test_fifo_queues.py
|
||||
```
|
||||
|
||||
**Test Coverage**:
|
||||
- ✅ FIFO queue operations (add, retrieve, status)
|
||||
- ✅ Data queue filling with multiple timeframes
|
||||
- ✅ BaseDataInput building from queues
|
||||
- ✅ Consistent feature vector size (always 7850)
|
||||
- ✅ Thread safety under concurrent access
|
||||
- ✅ Minimum data requirement validation
|
||||
- FIFO queue operations (add, retrieve, status)
|
||||
- Data queue filling with multiple timeframes
|
||||
- BaseDataInput building from queues
|
||||
- Consistent feature vector size (always 7850)
|
||||
- Thread safety under concurrent access
|
||||
- Minimum data requirement validation
|
||||
|
||||
## Monitoring
|
||||
|
||||
|
||||
Reference in New Issue
Block a user