remove emojis from console
This commit is contained in:
@@ -4,22 +4,22 @@
|
||||
|
||||
The Manual Trade Annotation UI is now **functionally complete** with all core features implemented and ready for use.
|
||||
|
||||
## ✅ Completed Tasks (Tasks 1-5)
|
||||
## Completed Tasks (Tasks 1-5)
|
||||
|
||||
### Task 1: Project Structure ✅
|
||||
### Task 1: Project Structure
|
||||
- Complete folder structure in `/ANNOTATE`
|
||||
- Flask/Dash web application
|
||||
- Template-based architecture (all HTML in separate files)
|
||||
- Dark theme CSS
|
||||
- Client-side JavaScript modules
|
||||
|
||||
### Task 2: Data Loading ✅
|
||||
### Task 2: Data Loading
|
||||
- `HistoricalDataLoader` - Integrates with existing DataProvider
|
||||
- `TimeRangeManager` - Time navigation and prefetching
|
||||
- Memory caching with TTL
|
||||
- **Uses same data source as training/inference**
|
||||
|
||||
### Task 3: Chart Visualization ✅
|
||||
### Task 3: Chart Visualization
|
||||
- Multi-timeframe Plotly charts (1s, 1m, 1h, 1d)
|
||||
- Candlestick + volume visualization
|
||||
- Chart synchronization across timeframes
|
||||
@@ -27,14 +27,14 @@ The Manual Trade Annotation UI is now **functionally complete** with all core fe
|
||||
- Zoom and pan functionality
|
||||
- Scroll zoom enabled
|
||||
|
||||
### Task 4: Time Navigation ✅
|
||||
### Task 4: Time Navigation
|
||||
- Date/time picker
|
||||
- Quick range buttons (1h, 4h, 1d, 1w)
|
||||
- Forward/backward navigation
|
||||
- Keyboard shortcuts (arrow keys)
|
||||
- Time range calculations
|
||||
|
||||
### Task 5: Trade Annotation ✅
|
||||
### Task 5: Trade Annotation
|
||||
- Click to mark entry/exit points
|
||||
- Visual markers on charts (▲ entry, ▼ exit)
|
||||
- P&L calculation and display
|
||||
@@ -44,7 +44,7 @@ The Manual Trade Annotation UI is now **functionally complete** with all core fe
|
||||
|
||||
## 🎯 Key Features
|
||||
|
||||
### 1. Data Consistency ✅
|
||||
### 1. Data Consistency
|
||||
```python
|
||||
# Same DataProvider used everywhere
|
||||
DataProvider → HistoricalDataLoader → Annotation UI
|
||||
@@ -52,7 +52,7 @@ DataProvider → HistoricalDataLoader → Annotation UI
|
||||
Training/Inference
|
||||
```
|
||||
|
||||
### 2. Test Case Generation ✅
|
||||
### 2. Test Case Generation
|
||||
```python
|
||||
# Generates test cases in realtime format
|
||||
{
|
||||
@@ -75,14 +75,14 @@ DataProvider → HistoricalDataLoader → Annotation UI
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Visual Annotation System ✅
|
||||
### 3. Visual Annotation System
|
||||
- **Entry markers**: Green/Red triangles (▲)
|
||||
- **Exit markers**: Green/Red triangles (▼)
|
||||
- **P&L labels**: Displayed with percentage
|
||||
- **Connecting lines**: Dashed lines between entry/exit
|
||||
- **Color coding**: Green for LONG, Red for SHORT
|
||||
|
||||
### 4. Chart Features ✅
|
||||
### 4. Chart Features
|
||||
- **Multi-timeframe**: 4 synchronized charts
|
||||
- **Candlestick**: OHLC visualization
|
||||
- **Volume bars**: Color-coded by direction
|
||||
@@ -164,7 +164,7 @@ Save to test_cases/annotation_*.json
|
||||
└─────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## 🚀 Usage Guide
|
||||
## Usage Guide
|
||||
|
||||
### 1. Start the Application
|
||||
```bash
|
||||
@@ -278,12 +278,12 @@ Export annotations to JSON/CSV
|
||||
|
||||
## 🎯 Next Steps (Optional Enhancements)
|
||||
|
||||
### Task 6: Annotation Storage ✅ (Already Complete)
|
||||
### Task 6: Annotation Storage (Already Complete)
|
||||
- JSON-based storage implemented
|
||||
- CRUD operations working
|
||||
- Auto-save functionality
|
||||
|
||||
### Task 7: Test Case Generation ✅ (Already Complete)
|
||||
### Task 7: Test Case Generation (Already Complete)
|
||||
- Realtime format implemented
|
||||
- Market context extraction working
|
||||
- File storage implemented
|
||||
@@ -304,14 +304,14 @@ Export annotations to JSON/CSV
|
||||
|
||||
## ✨ Key Achievements
|
||||
|
||||
1. **✅ Data Consistency**: Uses same DataProvider as training/inference
|
||||
2. **✅ Template Architecture**: All HTML in separate files
|
||||
3. **✅ Dark Theme**: Professional UI matching main dashboard
|
||||
4. **✅ Multi-Timeframe**: 4 synchronized charts
|
||||
5. **✅ Visual Annotations**: Clear entry/exit markers with P&L
|
||||
6. **✅ Test Case Generation**: Realtime format with market context
|
||||
7. **✅ Self-Contained**: Isolated in /ANNOTATE folder
|
||||
8. **✅ Production Ready**: Functional core features complete
|
||||
1. ** Data Consistency**: Uses same DataProvider as training/inference
|
||||
2. ** Template Architecture**: All HTML in separate files
|
||||
3. ** Dark Theme**: Professional UI matching main dashboard
|
||||
4. ** Multi-Timeframe**: 4 synchronized charts
|
||||
5. ** Visual Annotations**: Clear entry/exit markers with P&L
|
||||
6. ** Test Case Generation**: Realtime format with market context
|
||||
7. ** Self-Contained**: Isolated in /ANNOTATE folder
|
||||
8. ** Production Ready**: Functional core features complete
|
||||
|
||||
## 🎊 Success Criteria Met
|
||||
|
||||
@@ -326,14 +326,14 @@ Export annotations to JSON/CSV
|
||||
- [ ] Model training integration (optional)
|
||||
- [ ] Inference simulation (optional)
|
||||
|
||||
## 🚀 Ready for Use!
|
||||
## Ready for Use!
|
||||
|
||||
The ANNOTATE system is now **ready for production use**. You can:
|
||||
|
||||
1. ✅ Mark profitable trades on historical data
|
||||
2. ✅ Generate training test cases
|
||||
3. ✅ Visualize annotations on charts
|
||||
4. ✅ Export annotations for analysis
|
||||
5. ✅ Use same data as training/inference
|
||||
1. Mark profitable trades on historical data
|
||||
2. Generate training test cases
|
||||
3. Visualize annotations on charts
|
||||
4. Export annotations for analysis
|
||||
5. Use same data as training/inference
|
||||
|
||||
The core functionality is complete and the system is ready to generate high-quality training data for your models! 🎉
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
# ANNOTATE Project Progress
|
||||
|
||||
## ✅ Completed Tasks
|
||||
## Completed Tasks
|
||||
|
||||
### Task 1: Project Structure and Base Templates ✅
|
||||
### Task 1: Project Structure and Base Templates
|
||||
**Status**: Complete
|
||||
|
||||
**What was built**:
|
||||
@@ -33,7 +33,7 @@ ANNOTATE/
|
||||
└── data/ (storage directories)
|
||||
```
|
||||
|
||||
### Task 2: Data Loading and Caching Layer ✅
|
||||
### Task 2: Data Loading and Caching Layer
|
||||
**Status**: Complete
|
||||
|
||||
**What was built**:
|
||||
@@ -46,11 +46,11 @@ ANNOTATE/
|
||||
- Prefetching for smooth scrolling
|
||||
|
||||
**Key Features**:
|
||||
- ✅ Uses the **same DataProvider** as training/inference systems
|
||||
- ✅ Ensures **data consistency** across annotation, training, and inference
|
||||
- ✅ Caches data for performance
|
||||
- ✅ Supports time-based navigation
|
||||
- ✅ Prefetches adjacent ranges for smooth UX
|
||||
- Uses the **same DataProvider** as training/inference systems
|
||||
- Ensures **data consistency** across annotation, training, and inference
|
||||
- Caches data for performance
|
||||
- Supports time-based navigation
|
||||
- Prefetches adjacent ranges for smooth UX
|
||||
|
||||
**Integration Points**:
|
||||
```python
|
||||
@@ -67,14 +67,14 @@ df = data_loader.get_data('ETH/USDT', '1m', limit=500)
|
||||
## 🎯 Current Status
|
||||
|
||||
### Application Status
|
||||
- ✅ Flask server running on http://127.0.0.1:8051
|
||||
- ✅ Templates rendering correctly
|
||||
- ✅ Data loading integrated with existing DataProvider
|
||||
- ✅ Dark theme UI implemented
|
||||
- ✅ Chart visualization (COMPLETE)
|
||||
- ✅ Annotation functionality (COMPLETE)
|
||||
- ✅ Test case generation (COMPLETE)
|
||||
- ✅ **CORE FEATURES COMPLETE - READY FOR USE!**
|
||||
- Flask server running on http://127.0.0.1:8051
|
||||
- Templates rendering correctly
|
||||
- Data loading integrated with existing DataProvider
|
||||
- Dark theme UI implemented
|
||||
- Chart visualization (COMPLETE)
|
||||
- Annotation functionality (COMPLETE)
|
||||
- Test case generation (COMPLETE)
|
||||
- **CORE FEATURES COMPLETE - READY FOR USE!**
|
||||
|
||||
### Data Flow
|
||||
```
|
||||
@@ -146,11 +146,11 @@ The ANNOTATE system ensures data consistency by:
|
||||
5. **Shared Configuration**: Uses main config.yaml
|
||||
|
||||
### Architecture Benefits
|
||||
- ✅ **No Data Duplication**: Single source of truth
|
||||
- ✅ **Consistent Quality**: Same data cleaning/validation
|
||||
- ✅ **Performance**: Leverages existing caching
|
||||
- ✅ **Maintainability**: Changes to DataProvider automatically propagate
|
||||
- ✅ **Testing**: Annotations use same data as models see
|
||||
- **No Data Duplication**: Single source of truth
|
||||
- **Consistent Quality**: Same data cleaning/validation
|
||||
- **Performance**: Leverages existing caching
|
||||
- **Maintainability**: Changes to DataProvider automatically propagate
|
||||
- **Testing**: Annotations use same data as models see
|
||||
|
||||
### Test Case Generation
|
||||
When an annotation is created, the system will:
|
||||
@@ -162,7 +162,7 @@ When an annotation is created, the system will:
|
||||
|
||||
This ensures models can be trained on manually validated scenarios using the exact same data structure.
|
||||
|
||||
## 🚀 Running the Application
|
||||
## Running the Application
|
||||
|
||||
### Start the Server
|
||||
```bash
|
||||
@@ -198,10 +198,10 @@ test_cases = annotation_mgr.get_test_cases()
|
||||
|
||||
## 📝 Notes
|
||||
|
||||
- All HTML is in templates (requirement met ✅)
|
||||
- Dark theme implemented (requirement met ✅)
|
||||
- Data consistency ensured (requirement met ✅)
|
||||
- Self-contained in /ANNOTATE folder (requirement met ✅)
|
||||
- All HTML is in templates (requirement met )
|
||||
- Dark theme implemented (requirement met )
|
||||
- Data consistency ensured (requirement met )
|
||||
- Self-contained in /ANNOTATE folder (requirement met )
|
||||
- Ready for chart implementation (next step)
|
||||
|
||||
## 🎯 Success Criteria
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
A professional web-based interface for manually marking profitable buy/sell signals on historical market data to generate high-quality training test cases for machine learning models.
|
||||
|
||||
**Status**: ✅ **Production Ready** - Core features complete and tested
|
||||
**Status**: **Production Ready** - Core features complete and tested
|
||||
|
||||
## ✨ Key Features
|
||||
|
||||
@@ -27,7 +27,7 @@ A professional web-based interface for manually marking profitable buy/sell sign
|
||||
- **Data consistency**: Uses same DataProvider as training/inference
|
||||
- **Auto-save**: Test cases saved to JSON files
|
||||
|
||||
### 🔄 Data Integration
|
||||
### Data Integration
|
||||
- **Existing DataProvider**: No duplicate data fetching
|
||||
- **Cached data**: Leverages existing cache
|
||||
- **Same quality**: Identical data structure as models see
|
||||
@@ -39,7 +39,7 @@ A professional web-based interface for manually marking profitable buy/sell sign
|
||||
- **Responsive**: Works on different screen sizes
|
||||
- **Keyboard shortcuts**: Arrow keys for navigation
|
||||
|
||||
## 🚀 Quick Start
|
||||
## Quick Start
|
||||
|
||||
### Installation
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ Real-time inference mode runs your trained model on **live streaming data** from
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Starting Real-Time Inference
|
||||
## Starting Real-Time Inference
|
||||
|
||||
### Step 1: Select Model
|
||||
Choose the model you want to run from the dropdown in the training panel.
|
||||
@@ -97,16 +97,16 @@ Charts updating every 1s
|
||||
- **False positives** - Signals that shouldn't happen
|
||||
|
||||
### Good Signs
|
||||
- ✅ Signals at key levels (support/resistance)
|
||||
- ✅ High confidence (>70%)
|
||||
- ✅ Signals match your analysis
|
||||
- ✅ Few false positives
|
||||
- Signals at key levels (support/resistance)
|
||||
- High confidence (>70%)
|
||||
- Signals match your analysis
|
||||
- Few false positives
|
||||
|
||||
### Warning Signs
|
||||
- ⚠️ Too many signals (every second)
|
||||
- ⚠️ Low confidence (<50%)
|
||||
- ⚠️ Random signals
|
||||
- ⚠️ Signals don't match patterns
|
||||
- Too many signals (every second)
|
||||
- Low confidence (<50%)
|
||||
- Random signals
|
||||
- Signals don't match patterns
|
||||
|
||||
---
|
||||
|
||||
@@ -234,7 +234,7 @@ All 4 charts update simultaneously. Watch for:
|
||||
- Signals match training patterns
|
||||
- Timing is precise
|
||||
- No false positives
|
||||
- Model learned correctly ✅
|
||||
- Model learned correctly
|
||||
|
||||
**5. Stop Inference**
|
||||
- Click "Stop Inference"
|
||||
@@ -247,34 +247,34 @@ All 4 charts update simultaneously. Watch for:
|
||||
## 🎯 Best Practices
|
||||
|
||||
### Before Starting
|
||||
- ✅ Train model first
|
||||
- ✅ Verify model loaded
|
||||
- ✅ Check DataProvider has data
|
||||
- ✅ Close unnecessary tabs
|
||||
- Train model first
|
||||
- Verify model loaded
|
||||
- Check DataProvider has data
|
||||
- Close unnecessary tabs
|
||||
|
||||
### During Inference
|
||||
- ✅ Monitor all timeframes
|
||||
- ✅ Note signal quality
|
||||
- ✅ Check confidence levels
|
||||
- ✅ Compare with your analysis
|
||||
- Monitor all timeframes
|
||||
- Note signal quality
|
||||
- Check confidence levels
|
||||
- Compare with your analysis
|
||||
|
||||
### After Stopping
|
||||
- ✅ Review signal history
|
||||
- ✅ Note performance
|
||||
- ✅ Identify improvements
|
||||
- ✅ Adjust training if needed
|
||||
- Review signal history
|
||||
- Note performance
|
||||
- Identify improvements
|
||||
- Adjust training if needed
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Summary
|
||||
## Summary
|
||||
|
||||
Real-time inference provides:
|
||||
|
||||
✅ **Live chart updates** (1/second)
|
||||
✅ **Model predictions** in real-time
|
||||
✅ **Signal markers** on charts
|
||||
✅ **Confidence levels** displayed
|
||||
✅ **Performance monitoring** built-in
|
||||
**Live chart updates** (1/second)
|
||||
**Model predictions** in real-time
|
||||
**Signal markers** on charts
|
||||
**Confidence levels** displayed
|
||||
**Performance monitoring** built-in
|
||||
|
||||
Use it to:
|
||||
- **Validate training** - Check model learned correctly
|
||||
|
||||
@@ -3,62 +3,62 @@
|
||||
## 🎉 Project Complete!
|
||||
|
||||
**Date**: January 2025
|
||||
**Status**: ✅ **Production Ready**
|
||||
**Status**: **Production Ready**
|
||||
**Completion**: **Tasks 1-8 Complete** (Core + Model Integration)
|
||||
|
||||
---
|
||||
|
||||
## ✅ Completed Tasks Summary
|
||||
## Completed Tasks Summary
|
||||
|
||||
### ✅ Task 1: Project Structure and Base Templates
|
||||
### Task 1: Project Structure and Base Templates
|
||||
- Complete folder structure in `/ANNOTATE`
|
||||
- Flask/Dash application framework
|
||||
- Template-based architecture (all HTML separate)
|
||||
- Dark theme CSS styling
|
||||
- Client-side JavaScript modules
|
||||
|
||||
### ✅ Task 2: Data Loading and Caching Layer
|
||||
### Task 2: Data Loading and Caching Layer
|
||||
- `HistoricalDataLoader` class
|
||||
- `TimeRangeManager` for navigation
|
||||
- Integration with existing DataProvider
|
||||
- Memory caching with TTL
|
||||
- Multi-timeframe data loading
|
||||
|
||||
### ✅ Task 3: Multi-Timeframe Chart Visualization
|
||||
### Task 3: Multi-Timeframe Chart Visualization
|
||||
- Plotly candlestick charts (4 timeframes)
|
||||
- Volume bars with color coding
|
||||
- Chart synchronization
|
||||
- Hover information display
|
||||
- Zoom and pan functionality
|
||||
|
||||
### ✅ Task 4: Time Navigation System
|
||||
### Task 4: Time Navigation System
|
||||
- Date/time picker
|
||||
- Quick range buttons
|
||||
- Forward/backward navigation
|
||||
- Keyboard shortcuts
|
||||
- Time range calculations
|
||||
|
||||
### ✅ Task 5: Trade Annotation System
|
||||
### Task 5: Trade Annotation System
|
||||
- Click-to-mark entry/exit
|
||||
- Visual markers (▲▼)
|
||||
- P&L calculation
|
||||
- Connecting lines
|
||||
- Edit/delete functionality
|
||||
|
||||
### ✅ Task 6: Annotation Storage and Management
|
||||
### Task 6: Annotation Storage and Management
|
||||
- JSON-based storage
|
||||
- CRUD operations
|
||||
- Annotation validation
|
||||
- Listing UI
|
||||
- Export functionality
|
||||
|
||||
### ✅ Task 7: Test Case Generation System
|
||||
### Task 7: Test Case Generation System
|
||||
- Realtime format generation
|
||||
- Market context extraction
|
||||
- File storage
|
||||
- DataProvider integration
|
||||
|
||||
### ✅ Task 8: Model Loading and Management
|
||||
### Task 8: Model Loading and Management
|
||||
- TrainingSimulator class
|
||||
- Model loading from orchestrator
|
||||
- Available models API
|
||||
@@ -76,51 +76,51 @@
|
||||
- **Total Lines**: ~2,500+ lines of code
|
||||
|
||||
### Features Implemented
|
||||
- ✅ Multi-timeframe charts (4 timeframes)
|
||||
- ✅ Visual annotations with P&L
|
||||
- ✅ Test case generation
|
||||
- ✅ Data consistency with training
|
||||
- ✅ Model integration
|
||||
- ✅ Dark theme UI
|
||||
- ✅ Keyboard shortcuts
|
||||
- ✅ Export functionality
|
||||
- Multi-timeframe charts (4 timeframes)
|
||||
- Visual annotations with P&L
|
||||
- Test case generation
|
||||
- Data consistency with training
|
||||
- Model integration
|
||||
- Dark theme UI
|
||||
- Keyboard shortcuts
|
||||
- Export functionality
|
||||
|
||||
### API Endpoints
|
||||
- ✅ `/` - Main dashboard
|
||||
- ✅ `/api/chart-data` - Get chart data
|
||||
- ✅ `/api/save-annotation` - Save annotation
|
||||
- ✅ `/api/delete-annotation` - Delete annotation
|
||||
- ✅ `/api/generate-test-case` - Generate test case
|
||||
- ✅ `/api/export-annotations` - Export annotations
|
||||
- ✅ `/api/train-model` - Start training
|
||||
- ✅ `/api/training-progress` - Get progress
|
||||
- ✅ `/api/available-models` - List models
|
||||
- `/` - Main dashboard
|
||||
- `/api/chart-data` - Get chart data
|
||||
- `/api/save-annotation` - Save annotation
|
||||
- `/api/delete-annotation` - Delete annotation
|
||||
- `/api/generate-test-case` - Generate test case
|
||||
- `/api/export-annotations` - Export annotations
|
||||
- `/api/train-model` - Start training
|
||||
- `/api/training-progress` - Get progress
|
||||
- `/api/available-models` - List models
|
||||
|
||||
---
|
||||
|
||||
## 🎯 Key Achievements
|
||||
|
||||
### 1. Data Consistency ✅
|
||||
### 1. Data Consistency
|
||||
**Problem**: Annotations need same data as training/inference
|
||||
**Solution**: Integrated with existing DataProvider
|
||||
**Result**: Perfect data consistency across all systems
|
||||
|
||||
### 2. Visual Annotation System ✅
|
||||
### 2. Visual Annotation System
|
||||
**Problem**: Need intuitive way to mark trades
|
||||
**Solution**: Click-based marking with visual feedback
|
||||
**Result**: Professional TradingView-like interface
|
||||
|
||||
### 3. Test Case Generation ✅
|
||||
### 3. Test Case Generation
|
||||
**Problem**: Need training data in correct format
|
||||
**Solution**: Generate test cases with full market context
|
||||
**Result**: Ready-to-use training data
|
||||
|
||||
### 4. Model Integration ✅
|
||||
### 4. Model Integration
|
||||
**Problem**: Need to load and use existing models
|
||||
**Solution**: TrainingSimulator with orchestrator integration
|
||||
**Result**: Can load CNN, DQN, Transformer, COB models
|
||||
|
||||
### 5. Template Architecture ✅
|
||||
### 5. Template Architecture
|
||||
**Problem**: Maintainable HTML structure
|
||||
**Solution**: Jinja2 templates with component separation
|
||||
**Result**: Clean, maintainable codebase
|
||||
@@ -237,7 +237,7 @@ User Click → JavaScript → Flask API → AnnotationManager → JSON Storage
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Deployment Checklist
|
||||
## Deployment Checklist
|
||||
|
||||
- [x] Code complete and tested
|
||||
- [x] Documentation written
|
||||
@@ -255,22 +255,22 @@ User Click → JavaScript → Flask API → AnnotationManager → JSON Storage
|
||||
## 📊 Success Metrics
|
||||
|
||||
### Functionality
|
||||
- ✅ 100% of core features implemented
|
||||
- ✅ 100% of API endpoints working
|
||||
- ✅ 100% data consistency achieved
|
||||
- ✅ 100% template-based architecture
|
||||
- 100% of core features implemented
|
||||
- 100% of API endpoints working
|
||||
- 100% data consistency achieved
|
||||
- 100% template-based architecture
|
||||
|
||||
### Quality
|
||||
- ✅ Clean code structure
|
||||
- ✅ Comprehensive documentation
|
||||
- ✅ Error handling
|
||||
- ✅ Performance optimized
|
||||
- Clean code structure
|
||||
- Comprehensive documentation
|
||||
- Error handling
|
||||
- Performance optimized
|
||||
|
||||
### Integration
|
||||
- ✅ DataProvider integration
|
||||
- ✅ Orchestrator integration
|
||||
- ✅ Model loading
|
||||
- ✅ Test case generation
|
||||
- DataProvider integration
|
||||
- Orchestrator integration
|
||||
- Model loading
|
||||
- Test case generation
|
||||
|
||||
---
|
||||
|
||||
@@ -308,11 +308,11 @@ The ANNOTATE project is **complete and production-ready**. All core features hav
|
||||
5. **Production Ready**: Fully functional and documented
|
||||
|
||||
### Ready For
|
||||
- ✅ Marking profitable trades
|
||||
- ✅ Generating training test cases
|
||||
- ✅ Model training integration
|
||||
- ✅ Production deployment
|
||||
- ✅ Team usage
|
||||
- Marking profitable trades
|
||||
- Generating training test cases
|
||||
- Model training integration
|
||||
- Production deployment
|
||||
- Team usage
|
||||
|
||||
**Status**: 🎉 **COMPLETE AND READY FOR USE!**
|
||||
|
||||
|
||||
@@ -3,9 +3,9 @@
|
||||
## 🎯 Overview
|
||||
|
||||
The ANNOTATE system generates training data that includes **±5 minutes of market data** around each trade signal. This allows models to learn:
|
||||
- ✅ **WHERE to generate signals** (at entry/exit points)
|
||||
- ✅ **WHERE NOT to generate signals** (before entry, after exit)
|
||||
- ✅ **Context around the signal** (what led to the trade)
|
||||
- **WHERE to generate signals** (at entry/exit points)
|
||||
- **WHERE NOT to generate signals** (before entry, after exit)
|
||||
- **Context around the signal** (what led to the trade)
|
||||
|
||||
---
|
||||
|
||||
@@ -259,11 +259,11 @@ for timestamp, label in zip(timestamps, labels):
|
||||
```
|
||||
|
||||
**Model Learns:**
|
||||
- ✅ Don't signal during consolidation
|
||||
- ✅ Signal at breakout confirmation
|
||||
- ✅ Hold during profitable move
|
||||
- ✅ Exit at target
|
||||
- ✅ Don't signal after exit
|
||||
- Don't signal during consolidation
|
||||
- Signal at breakout confirmation
|
||||
- Hold during profitable move
|
||||
- Exit at target
|
||||
- Don't signal after exit
|
||||
|
||||
---
|
||||
|
||||
@@ -290,16 +290,16 @@ print(f"EXIT: {labels.count(3)}")
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Summary
|
||||
## Summary
|
||||
|
||||
The ANNOTATE system generates **production-ready training data** with:
|
||||
|
||||
✅ **±5 minutes of context** around each signal
|
||||
✅ **Training labels** for each timestamp
|
||||
✅ **Negative examples** (where NOT to signal)
|
||||
✅ **Positive examples** (where TO signal)
|
||||
✅ **All 4 timeframes** (1s, 1m, 1h, 1d)
|
||||
✅ **Complete market state** (OHLCV data)
|
||||
**±5 minutes of context** around each signal
|
||||
**Training labels** for each timestamp
|
||||
**Negative examples** (where NOT to signal)
|
||||
**Positive examples** (where TO signal)
|
||||
**All 4 timeframes** (1s, 1m, 1h, 1d)
|
||||
**Complete market state** (OHLCV data)
|
||||
|
||||
This enables models to learn:
|
||||
- **Precise timing** of entry/exit signals
|
||||
|
||||
@@ -18,11 +18,11 @@ When you save an annotation, a test case is **automatically generated** and save
|
||||
|
||||
### What's Included
|
||||
Each test case contains:
|
||||
- ✅ **Market State** - OHLCV data for all 4 timeframes (100 candles each)
|
||||
- ✅ **Entry/Exit Prices** - Exact prices from annotation
|
||||
- ✅ **Expected Outcome** - Direction (LONG/SHORT) and P&L percentage
|
||||
- ✅ **Timestamp** - When the trade occurred
|
||||
- ✅ **Action** - BUY or SELL signal
|
||||
- **Market State** - OHLCV data for all 4 timeframes (100 candles each)
|
||||
- **Entry/Exit Prices** - Exact prices from annotation
|
||||
- **Expected Outcome** - Direction (LONG/SHORT) and P&L percentage
|
||||
- **Timestamp** - When the trade occurred
|
||||
- **Action** - BUY or SELL signal
|
||||
|
||||
### Test Case Format
|
||||
```json
|
||||
@@ -105,7 +105,7 @@ The system integrates with your existing models:
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Real-Time Inference
|
||||
## Real-Time Inference
|
||||
|
||||
### Overview
|
||||
Real-time inference mode runs your trained model on **live streaming data** from the DataProvider, generating predictions in real-time.
|
||||
@@ -298,7 +298,7 @@ model = orchestrator.cob_rl_agent
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Advanced Usage
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Training Parameters
|
||||
Edit `ANNOTATE/core/training_simulator.py`:
|
||||
@@ -345,11 +345,11 @@ models/checkpoints/ (main system)
|
||||
|
||||
The ANNOTATE system provides:
|
||||
|
||||
✅ **Automatic Test Case Generation** - From annotations
|
||||
✅ **Production-Ready Training** - Integrates with orchestrator
|
||||
✅ **Real-Time Inference** - Live predictions on streaming data
|
||||
✅ **Data Consistency** - Same data as main system
|
||||
✅ **Easy Monitoring** - Real-time progress and signals
|
||||
**Automatic Test Case Generation** - From annotations
|
||||
**Production-Ready Training** - Integrates with orchestrator
|
||||
**Real-Time Inference** - Live predictions on streaming data
|
||||
**Data Consistency** - Same data as main system
|
||||
**Easy Monitoring** - Real-time progress and signals
|
||||
|
||||
**You can now:**
|
||||
1. Mark profitable trades
|
||||
@@ -360,4 +360,4 @@ The ANNOTATE system provides:
|
||||
|
||||
---
|
||||
|
||||
**Happy Training!** 🚀
|
||||
**Happy Training!**
|
||||
|
||||
@@ -24,12 +24,12 @@ Access at: **http://127.0.0.1:8051**
|
||||
|
||||
### What Gets Captured
|
||||
When you create an annotation, the system captures:
|
||||
- ✅ **Entry timestamp and price**
|
||||
- ✅ **Exit timestamp and price**
|
||||
- ✅ **Full market state** (OHLCV for all 4 timeframes)
|
||||
- ✅ **Direction** (LONG/SHORT)
|
||||
- ✅ **P&L percentage**
|
||||
- ✅ **Market context** at both entry and exit
|
||||
- **Entry timestamp and price**
|
||||
- **Exit timestamp and price**
|
||||
- **Full market state** (OHLCV for all 4 timeframes)
|
||||
- **Direction** (LONG/SHORT)
|
||||
- **P&L percentage**
|
||||
- **Market context** at both entry and exit
|
||||
|
||||
This ensures the annotation contains **exactly the same data** your models will see during training!
|
||||
|
||||
@@ -99,10 +99,10 @@ This ensures the annotation contains **exactly the same data** your models will
|
||||
|
||||
### Automatic Generation
|
||||
When you save an annotation, the system:
|
||||
1. ✅ Captures market state at entry time
|
||||
2. ✅ Captures market state at exit time
|
||||
3. ✅ Stores OHLCV data for all timeframes
|
||||
4. ✅ Calculates expected outcome (P&L, direction)
|
||||
1. Captures market state at entry time
|
||||
2. Captures market state at exit time
|
||||
3. Stores OHLCV data for all timeframes
|
||||
4. Calculates expected outcome (P&L, direction)
|
||||
|
||||
### Manual Generation
|
||||
1. Find annotation in sidebar
|
||||
@@ -232,11 +232,11 @@ Export annotations regularly to backup your work.
|
||||
### Why It Matters
|
||||
The annotation system uses the **same DataProvider** as your training and inference systems. This means:
|
||||
|
||||
✅ **Same data source**
|
||||
✅ **Same data quality**
|
||||
✅ **Same data structure**
|
||||
✅ **Same timeframes**
|
||||
✅ **Same caching**
|
||||
**Same data source**
|
||||
**Same data quality**
|
||||
**Same data structure**
|
||||
**Same timeframes**
|
||||
**Same caching**
|
||||
|
||||
### What This Guarantees
|
||||
When you train a model on annotated data:
|
||||
@@ -282,7 +282,7 @@ ANNOTATE/data/annotations/export_<timestamp>.json
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Next Steps
|
||||
## Next Steps
|
||||
|
||||
After creating annotations:
|
||||
|
||||
|
||||
@@ -54,18 +54,18 @@ from utils.checkpoint_manager import get_checkpoint_manager
|
||||
|
||||
## NEVER DO THIS
|
||||
|
||||
❌ Create files with "simulator", "simulation", "mock", "fake" in the name
|
||||
❌ Use placeholder/dummy training loops
|
||||
❌ Return fake metrics or results
|
||||
❌ Skip actual model training
|
||||
Create files with "simulator", "simulation", "mock", "fake" in the name
|
||||
Use placeholder/dummy training loops
|
||||
Return fake metrics or results
|
||||
Skip actual model training
|
||||
|
||||
## ALWAYS DO THIS
|
||||
|
||||
✅ Use real model training methods
|
||||
✅ Integrate with existing training systems
|
||||
✅ Save real checkpoints
|
||||
✅ Track real metrics
|
||||
✅ Handle real data
|
||||
Use real model training methods
|
||||
Integrate with existing training systems
|
||||
Save real checkpoints
|
||||
Track real metrics
|
||||
Handle real data
|
||||
|
||||
---
|
||||
|
||||
|
||||
@@ -82,7 +82,7 @@ class HistoricalDataLoader:
|
||||
# Use cached data if we have enough candles
|
||||
if len(cached_df) >= min(limit, 100): # Use cached if we have at least 100 candles
|
||||
elapsed_ms = (time.time() - start_time_ms) * 1000
|
||||
logger.debug(f"🚀 DataProvider cache hit for {symbol} {timeframe} ({len(cached_df)} candles, {elapsed_ms:.1f}ms)")
|
||||
logger.debug(f" DataProvider cache hit for {symbol} {timeframe} ({len(cached_df)} candles, {elapsed_ms:.1f}ms)")
|
||||
|
||||
# Filter by time range with direction support
|
||||
filtered_df = self._filter_by_time_range(
|
||||
@@ -177,7 +177,7 @@ class HistoricalDataLoader:
|
||||
|
||||
if df is not None and not df.empty:
|
||||
elapsed_ms = (time.time() - start_time_ms) * 1000
|
||||
logger.info(f"✅ DuckDB hit for {symbol} {timeframe} ({len(df)} candles, {elapsed_ms:.1f}ms)")
|
||||
logger.info(f" DuckDB hit for {symbol} {timeframe} ({len(df)} candles, {elapsed_ms:.1f}ms)")
|
||||
# Cache in memory
|
||||
self.memory_cache[cache_key] = (df.copy(), datetime.now())
|
||||
return df
|
||||
@@ -346,7 +346,7 @@ class HistoricalDataLoader:
|
||||
df = df.set_index('timestamp')
|
||||
df = df.sort_index()
|
||||
|
||||
logger.info(f"✅ Fetched {len(df)} candles from Binance for {symbol} {timeframe}")
|
||||
logger.info(f" Fetched {len(df)} candles from Binance for {symbol} {timeframe}")
|
||||
return df
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -171,23 +171,23 @@ class RealTrainingAdapter:
|
||||
if not training_data:
|
||||
raise Exception("No valid training data prepared from test cases")
|
||||
|
||||
logger.info(f"✅ Prepared {len(training_data)} training samples")
|
||||
logger.info(f" Prepared {len(training_data)} training samples")
|
||||
|
||||
# Route to appropriate REAL training method
|
||||
if model_name in ["CNN", "StandardizedCNN"]:
|
||||
logger.info("🔄 Starting CNN training...")
|
||||
logger.info(" Starting CNN training...")
|
||||
self._train_cnn_real(session, training_data)
|
||||
elif model_name == "DQN":
|
||||
logger.info("🔄 Starting DQN training...")
|
||||
logger.info(" Starting DQN training...")
|
||||
self._train_dqn_real(session, training_data)
|
||||
elif model_name == "Transformer":
|
||||
logger.info("🔄 Starting Transformer training...")
|
||||
logger.info(" Starting Transformer training...")
|
||||
self._train_transformer_real(session, training_data)
|
||||
elif model_name == "COB":
|
||||
logger.info("🔄 Starting COB training...")
|
||||
logger.info(" Starting COB training...")
|
||||
self._train_cob_real(session, training_data)
|
||||
elif model_name == "Extrema":
|
||||
logger.info("🔄 Starting Extrema training...")
|
||||
logger.info(" Starting Extrema training...")
|
||||
self._train_extrema_real(session, training_data)
|
||||
else:
|
||||
raise Exception(f"Unknown model type: {model_name}")
|
||||
@@ -196,12 +196,12 @@ class RealTrainingAdapter:
|
||||
session.status = 'completed'
|
||||
session.duration_seconds = time.time() - session.start_time
|
||||
|
||||
logger.info(f"✅ REAL training completed: {training_id} in {session.duration_seconds:.2f}s")
|
||||
logger.info(f" REAL training completed: {training_id} in {session.duration_seconds:.2f}s")
|
||||
logger.info(f" Final loss: {session.final_loss}")
|
||||
logger.info(f" Accuracy: {session.accuracy}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ REAL training failed: {e}", exc_info=True)
|
||||
logger.error(f" REAL training failed: {e}", exc_info=True)
|
||||
session.status = 'failed'
|
||||
session.error = str(e)
|
||||
session.duration_seconds = time.time() - session.start_time
|
||||
@@ -266,15 +266,15 @@ class RealTrainingAdapter:
|
||||
'close': df['close'].tolist(),
|
||||
'volume': df['volume'].tolist()
|
||||
}
|
||||
logger.debug(f" ✅ {timeframe}: {len(df)} candles")
|
||||
logger.debug(f" {timeframe}: {len(df)} candles")
|
||||
else:
|
||||
logger.warning(f" ❌ {timeframe}: No data")
|
||||
logger.warning(f" {timeframe}: No data")
|
||||
|
||||
if market_state['timeframes']:
|
||||
logger.info(f" ✅ Fetched market state with {len(market_state['timeframes'])} timeframes")
|
||||
logger.info(f" Fetched market state with {len(market_state['timeframes'])} timeframes")
|
||||
return market_state
|
||||
else:
|
||||
logger.warning(f" ❌ No market data fetched")
|
||||
logger.warning(f" No market data fetched")
|
||||
return {}
|
||||
|
||||
except Exception as e:
|
||||
@@ -309,7 +309,7 @@ class RealTrainingAdapter:
|
||||
expected_outcome = test_case.get('expected_outcome', {})
|
||||
|
||||
if not expected_outcome:
|
||||
logger.warning(f"⚠️ Skipping test case {test_case.get('test_case_id')}: missing expected_outcome")
|
||||
logger.warning(f" Skipping test case {test_case.get('test_case_id')}: missing expected_outcome")
|
||||
continue
|
||||
|
||||
# Check if market_state is provided, if not, fetch it dynamically
|
||||
@@ -320,7 +320,7 @@ class RealTrainingAdapter:
|
||||
market_state = self._fetch_market_state_for_test_case(test_case)
|
||||
|
||||
if not market_state:
|
||||
logger.warning(f"⚠️ Skipping test case {test_case.get('test_case_id')}: could not fetch market state")
|
||||
logger.warning(f" Skipping test case {test_case.get('test_case_id')}: could not fetch market state")
|
||||
continue
|
||||
|
||||
logger.debug(f" Test case {i+1}: has_market_state={bool(market_state)}, has_expected_outcome={bool(expected_outcome)}")
|
||||
@@ -339,7 +339,7 @@ class RealTrainingAdapter:
|
||||
}
|
||||
|
||||
training_data.append(entry_sample)
|
||||
logger.debug(f" ✅ Entry sample: {entry_sample['direction']} @ {entry_sample['entry_price']}")
|
||||
logger.debug(f" Entry sample: {entry_sample['direction']} @ {entry_sample['entry_price']}")
|
||||
|
||||
# Create HOLD samples (every candle while position is open)
|
||||
# This teaches the model to maintain the position until exit
|
||||
@@ -367,7 +367,7 @@ class RealTrainingAdapter:
|
||||
'repetitions': training_repetitions
|
||||
}
|
||||
training_data.append(exit_sample)
|
||||
logger.debug(f" ✅ Exit sample @ {exit_sample['exit_price']} ({exit_sample['profit_loss_pct']:.2f}%)")
|
||||
logger.debug(f" Exit sample @ {exit_sample['exit_price']} ({exit_sample['profit_loss_pct']:.2f}%)")
|
||||
|
||||
# Create NEGATIVE samples (where model should NOT trade)
|
||||
# These are candles before and after the signal
|
||||
@@ -382,14 +382,14 @@ class RealTrainingAdapter:
|
||||
logger.debug(f" ➕ Added {len(negative_samples)} negative samples (±{negative_samples_window} candles)")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error preparing test case {i+1}: {e}")
|
||||
logger.error(f" Error preparing test case {i+1}: {e}")
|
||||
|
||||
total_entry = sum(1 for s in training_data if s.get('label') == 'ENTRY')
|
||||
total_hold = sum(1 for s in training_data if s.get('label') == 'HOLD')
|
||||
total_exit = sum(1 for s in training_data if s.get('label') == 'EXIT')
|
||||
total_no_trade = sum(1 for s in training_data if s.get('label') == 'NO_TRADE')
|
||||
|
||||
logger.info(f"✅ Prepared {len(training_data)} training samples from {len(test_cases)} test cases")
|
||||
logger.info(f" Prepared {len(training_data)} training samples from {len(test_cases)} test cases")
|
||||
logger.info(f" ENTRY samples: {total_entry}")
|
||||
logger.info(f" HOLD samples: {total_hold}")
|
||||
logger.info(f" EXIT samples: {total_exit}")
|
||||
@@ -399,7 +399,7 @@ class RealTrainingAdapter:
|
||||
logger.info(f" Ratio: 1:{total_no_trade/total_entry:.1f} (entry:no_trade)")
|
||||
|
||||
if len(training_data) < len(test_cases):
|
||||
logger.warning(f"⚠️ Skipped {len(test_cases) - len(training_data)} test cases due to missing data")
|
||||
logger.warning(f" Skipped {len(test_cases) - len(training_data)} test cases due to missing data")
|
||||
|
||||
return training_data
|
||||
|
||||
@@ -1048,7 +1048,7 @@ class RealTrainingAdapter:
|
||||
if not converted_batches:
|
||||
raise Exception("No valid training batches after conversion")
|
||||
|
||||
logger.info(f" ✅ Converted {len(training_data)} samples to {len(converted_batches)} training batches")
|
||||
logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches")
|
||||
|
||||
# Train using train_step for each batch
|
||||
for epoch in range(session.total_epochs):
|
||||
|
||||
@@ -196,14 +196,14 @@ class AnnotationDashboard:
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
if attempt > 0:
|
||||
logger.info(f"🔄 Retry attempt {attempt + 1}/{max_retries} for model loading...")
|
||||
logger.info(f" Retry attempt {attempt + 1}/{max_retries} for model loading...")
|
||||
time.sleep(retry_delay)
|
||||
else:
|
||||
logger.info("🔄 Starting async model loading...")
|
||||
logger.info(" Starting async model loading...")
|
||||
|
||||
# Check if TradingOrchestrator is available
|
||||
if not TradingOrchestrator:
|
||||
logger.error("❌ TradingOrchestrator class not available")
|
||||
logger.error(" TradingOrchestrator class not available")
|
||||
self.models_loading = False
|
||||
self.available_models = []
|
||||
return
|
||||
@@ -214,48 +214,48 @@ class AnnotationDashboard:
|
||||
data_provider=self.data_provider,
|
||||
enhanced_rl_training=True
|
||||
)
|
||||
logger.info(" ✅ Orchestrator created")
|
||||
logger.info(" Orchestrator created")
|
||||
|
||||
# Initialize ML models
|
||||
logger.info(" Initializing ML models...")
|
||||
self.orchestrator._initialize_ml_models()
|
||||
logger.info(" ✅ ML models initialized")
|
||||
logger.info(" ML models initialized")
|
||||
|
||||
# Update training adapter with orchestrator
|
||||
self.training_adapter.orchestrator = self.orchestrator
|
||||
logger.info(" ✅ Training adapter updated")
|
||||
logger.info(" Training adapter updated")
|
||||
|
||||
# Get available models from orchestrator
|
||||
available = []
|
||||
if hasattr(self.orchestrator, 'rl_agent') and self.orchestrator.rl_agent:
|
||||
available.append('DQN')
|
||||
logger.info(" ✅ DQN model available")
|
||||
logger.info(" DQN model available")
|
||||
if hasattr(self.orchestrator, 'cnn_model') and self.orchestrator.cnn_model:
|
||||
available.append('CNN')
|
||||
logger.info(" ✅ CNN model available")
|
||||
logger.info(" CNN model available")
|
||||
if hasattr(self.orchestrator, 'transformer_model') and self.orchestrator.transformer_model:
|
||||
available.append('Transformer')
|
||||
logger.info(" ✅ Transformer model available")
|
||||
logger.info(" Transformer model available")
|
||||
|
||||
self.available_models = available
|
||||
|
||||
if available:
|
||||
logger.info(f"✅ Models loaded successfully: {', '.join(available)}")
|
||||
logger.info(f" Models loaded successfully: {', '.join(available)}")
|
||||
else:
|
||||
logger.warning("⚠️ No models were initialized (this might be normal if models aren't configured)")
|
||||
logger.warning(" No models were initialized (this might be normal if models aren't configured)")
|
||||
|
||||
self.models_loading = False
|
||||
logger.info("✅ Async model loading complete")
|
||||
logger.info(" Async model loading complete")
|
||||
return # Success - exit retry loop
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Error loading models (attempt {attempt + 1}/{max_retries}): {e}")
|
||||
logger.error(f" Error loading models (attempt {attempt + 1}/{max_retries}): {e}")
|
||||
import traceback
|
||||
logger.error(f"Traceback:\n{traceback.format_exc()}")
|
||||
|
||||
if attempt == max_retries - 1:
|
||||
# Final attempt failed
|
||||
logger.error(f"❌ Model loading failed after {max_retries} attempts")
|
||||
logger.error(f" Model loading failed after {max_retries} attempts")
|
||||
self.models_loading = False
|
||||
self.available_models = []
|
||||
else:
|
||||
@@ -264,7 +264,7 @@ class AnnotationDashboard:
|
||||
# Start loading in background thread
|
||||
thread = threading.Thread(target=load_models, daemon=True, name="ModelLoader")
|
||||
thread.start()
|
||||
logger.info(f"🚀 Model loading started in background thread (ID: {thread.ident}, Name: {thread.name})")
|
||||
logger.info(f" Model loading started in background thread (ID: {thread.ident}, Name: {thread.name})")
|
||||
logger.info(" UI remains responsive while models load...")
|
||||
logger.info(" Will retry up to 3 times if loading fails")
|
||||
|
||||
@@ -284,7 +284,7 @@ class AnnotationDashboard:
|
||||
)
|
||||
|
||||
if success:
|
||||
logger.info("✅ ANNOTATE: Unified storage enabled for real-time data")
|
||||
logger.info(" ANNOTATE: Unified storage enabled for real-time data")
|
||||
|
||||
# Get statistics
|
||||
stats = self.data_provider.get_unified_storage_stats()
|
||||
@@ -293,7 +293,7 @@ class AnnotationDashboard:
|
||||
logger.info(" Historical data access: <100ms")
|
||||
logger.info(" Annotation data: Available at any timestamp")
|
||||
else:
|
||||
logger.warning("⚠️ ANNOTATE: Unified storage not available, using cached data only")
|
||||
logger.warning(" ANNOTATE: Unified storage not available, using cached data only")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"ANNOTATE: Could not enable unified storage: {e}")
|
||||
@@ -312,7 +312,7 @@ class AnnotationDashboard:
|
||||
# Wait for app to fully start
|
||||
time.sleep(5)
|
||||
|
||||
logger.info("🔄 Starting one-time background data refresh (fetching only recent missing data)")
|
||||
logger.info(" Starting one-time background data refresh (fetching only recent missing data)")
|
||||
|
||||
# Disable startup mode to fetch fresh data
|
||||
self.data_loader.disable_startup_mode()
|
||||
@@ -321,7 +321,7 @@ class AnnotationDashboard:
|
||||
logger.info("Using on-demand refresh for recent data")
|
||||
self.data_provider.refresh_data_on_demand()
|
||||
|
||||
logger.info("✅ One-time background data refresh completed")
|
||||
logger.info(" One-time background data refresh completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in background data refresh: {e}")
|
||||
@@ -488,9 +488,9 @@ class AnnotationDashboard:
|
||||
<h1 class="text-center">📝 ANNOTATE - Manual Trade Annotation UI</h1>
|
||||
<div class="alert alert-info">
|
||||
<h4>System Status</h4>
|
||||
<p>✅ Annotation Manager: Active</p>
|
||||
<p>⚠️ Data Provider: {'Available' if self.data_provider else 'Not Available (Standalone Mode)'}</p>
|
||||
<p>⚠️ Trading Orchestrator: {'Available' if self.orchestrator else 'Not Available (Standalone Mode)'}</p>
|
||||
<p> Annotation Manager: Active</p>
|
||||
<p> Data Provider: {'Available' if self.data_provider else 'Not Available (Standalone Mode)'}</p>
|
||||
<p> Trading Orchestrator: {'Available' if self.orchestrator else 'Not Available (Standalone Mode)'}</p>
|
||||
</div>
|
||||
<div class="row">
|
||||
<div class="col-md-6">
|
||||
@@ -537,7 +537,7 @@ class AnnotationDashboard:
|
||||
'error': {'code': 'INVALID_REQUEST', 'message': 'Missing timeframe or timestamps'}
|
||||
})
|
||||
|
||||
logger.info(f"🔄 Recalculating pivots for {symbol} {timeframe} with {len(timestamps)} candles")
|
||||
logger.info(f" Recalculating pivots for {symbol} {timeframe} with {len(timestamps)} candles")
|
||||
|
||||
# Convert to DataFrame
|
||||
df = pd.DataFrame({
|
||||
@@ -552,7 +552,7 @@ class AnnotationDashboard:
|
||||
# Recalculate pivot markers
|
||||
pivot_markers = self._get_pivot_markers_for_timeframe(symbol, timeframe, df)
|
||||
|
||||
logger.info(f" ✅ Recalculated {len(pivot_markers)} pivot candles")
|
||||
logger.info(f" Recalculated {len(pivot_markers)} pivot candles")
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
@@ -614,7 +614,7 @@ class AnnotationDashboard:
|
||||
)
|
||||
|
||||
if df is not None and not df.empty:
|
||||
logger.info(f" ✅ {timeframe}: {len(df)} candles ({df.index[0]} to {df.index[-1]})")
|
||||
logger.info(f" {timeframe}: {len(df)} candles ({df.index[0]} to {df.index[-1]})")
|
||||
|
||||
# Get pivot points for this timeframe
|
||||
pivot_markers = self._get_pivot_markers_for_timeframe(symbol, timeframe, df)
|
||||
@@ -630,7 +630,7 @@ class AnnotationDashboard:
|
||||
'pivot_markers': pivot_markers # Optional: only present if pivots exist
|
||||
}
|
||||
else:
|
||||
logger.warning(f" ❌ {timeframe}: No data returned")
|
||||
logger.warning(f" {timeframe}: No data returned")
|
||||
|
||||
# Get pivot bounds for the symbol
|
||||
pivot_bounds = None
|
||||
|
||||
@@ -1215,10 +1215,10 @@ class ChartManager {
|
||||
// Merge with existing data
|
||||
this.mergeChartData(timeframe, newData, direction);
|
||||
|
||||
console.log(`✅ Loaded ${newData.timestamps.length} new candles for ${timeframe}`);
|
||||
console.log(` Loaded ${newData.timestamps.length} new candles for ${timeframe}`);
|
||||
window.showSuccess(`Loaded ${newData.timestamps.length} more candles`);
|
||||
} else {
|
||||
console.warn(`❌ No more data available for ${timeframe} ${direction}`);
|
||||
console.warn(` No more data available for ${timeframe} ${direction}`);
|
||||
console.warn('Full result:', result);
|
||||
window.showWarning('No more historical data available');
|
||||
}
|
||||
@@ -1312,7 +1312,7 @@ class ChartManager {
|
||||
*/
|
||||
async recalculatePivots(timeframe, data) {
|
||||
try {
|
||||
console.log(`🔄 Recalculating pivots for ${timeframe} with ${data.timestamps.length} candles...`);
|
||||
console.log(` Recalculating pivots for ${timeframe} with ${data.timestamps.length} candles...`);
|
||||
|
||||
const response = await fetch('/api/recalculate-pivots', {
|
||||
method: 'POST',
|
||||
@@ -1338,7 +1338,7 @@ class ChartManager {
|
||||
const chart = this.charts[timeframe];
|
||||
if (chart && chart.data) {
|
||||
chart.data.pivot_markers = result.pivot_markers;
|
||||
console.log(`✅ Pivots recalculated: ${Object.keys(result.pivot_markers).length} pivot candles`);
|
||||
console.log(` Pivots recalculated: ${Object.keys(result.pivot_markers).length} pivot candles`);
|
||||
|
||||
// Redraw the chart with updated pivots
|
||||
this.redrawChartWithPivots(timeframe, chart.data);
|
||||
|
||||
@@ -113,7 +113,7 @@
|
||||
|
||||
if (data.loading) {
|
||||
// Models still loading - show loading message and poll
|
||||
modelSelect.innerHTML = '<option value="">🔄 Loading models...</option>';
|
||||
modelSelect.innerHTML = '<option value=""> Loading models...</option>';
|
||||
|
||||
// Start polling if not already polling
|
||||
if (!modelLoadingPollInterval) {
|
||||
@@ -132,7 +132,7 @@
|
||||
if (data.success && data.models.length > 0) {
|
||||
// Show success notification
|
||||
if (window.showSuccess) {
|
||||
window.showSuccess(`✅ ${data.models.length} models loaded and ready for training`);
|
||||
window.showSuccess(` ${data.models.length} models loaded and ready for training`);
|
||||
}
|
||||
|
||||
data.models.forEach(model => {
|
||||
@@ -142,7 +142,7 @@
|
||||
modelSelect.appendChild(option);
|
||||
});
|
||||
|
||||
console.log(`✅ Models loaded: ${data.models.join(', ')}`);
|
||||
console.log(` Models loaded: ${data.models.join(', ')}`);
|
||||
} else {
|
||||
const option = document.createElement('option');
|
||||
option.value = '';
|
||||
@@ -157,12 +157,12 @@
|
||||
|
||||
// Don't stop polling on network errors - keep trying
|
||||
if (!modelLoadingPollInterval) {
|
||||
modelSelect.innerHTML = '<option value="">⚠️ Connection error, retrying...</option>';
|
||||
modelSelect.innerHTML = '<option value=""> Connection error, retrying...</option>';
|
||||
// Start polling to retry
|
||||
modelLoadingPollInterval = setInterval(loadAvailableModels, 3000); // Poll every 3 seconds
|
||||
} else {
|
||||
// Already polling, just update the message
|
||||
modelSelect.innerHTML = '<option value="">🔄 Retrying...</option>';
|
||||
modelSelect.innerHTML = '<option value=""> Retrying...</option>';
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user