extrema trainer WIP
This commit is contained in:
@ -976,15 +976,21 @@ class TradingOrchestrator:
|
||||
# The presence of features indicates a signal. We'll return a generic HOLD
|
||||
# with a neutral confidence. This can be refined if ExtremaTrainer provides
|
||||
# more specific BUY/SELL signals directly.
|
||||
return {
|
||||
"action": "HOLD",
|
||||
"confidence": 0.5,
|
||||
"probabilities": {
|
||||
"BUY": 0.33,
|
||||
"SELL": 0.33,
|
||||
"HOLD": 0.34,
|
||||
},
|
||||
}
|
||||
# Provide next-pivot prediction vector capped at 5 min
|
||||
pred = self.model.predict_next_pivot(symbol=symbol)
|
||||
if pred:
|
||||
return {
|
||||
"action": "HOLD",
|
||||
"confidence": pred.confidence,
|
||||
"prediction": {
|
||||
"target_type": pred.target_type,
|
||||
"predicted_time": pred.predicted_time,
|
||||
"predicted_price": pred.predicted_price,
|
||||
"horizon_seconds": pred.horizon_seconds,
|
||||
},
|
||||
}
|
||||
# Fallback neutral
|
||||
return {"action": "HOLD", "confidence": 0.5}
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
|
Reference in New Issue
Block a user