extrema trainer WIP
This commit is contained in:
@ -43,6 +43,22 @@ class ExtremaPoint:
|
||||
market_context: Dict[str, Any]
|
||||
outcome: Optional[float] = None # Price change after extrema
|
||||
|
||||
@dataclass
|
||||
class PredictedPivot:
|
||||
"""Represents a prediction of the next pivot point within a capped horizon"""
|
||||
symbol: str
|
||||
created_at: datetime
|
||||
current_price: float
|
||||
predicted_time: datetime
|
||||
predicted_price: float
|
||||
horizon_seconds: int
|
||||
target_type: str # 'top' or 'bottom'
|
||||
confidence: float
|
||||
evaluated: bool = False
|
||||
success: Optional[bool] = None
|
||||
error_abs: Optional[float] = None # absolute price error at eval
|
||||
time_error_s: Optional[int] = None # time offset at eval
|
||||
|
||||
@dataclass
|
||||
class ContextData:
|
||||
"""200-candle 1m context data for enhanced model performance"""
|
||||
@ -103,6 +119,10 @@ class ExtremaTrainer:
|
||||
'successful_predictions': 0,
|
||||
'failed_predictions': 0,
|
||||
'detection_accuracy': 0.0,
|
||||
'prediction_evaluations': 0,
|
||||
'prediction_successes': 0,
|
||||
'prediction_mae': 0.0, # mean absolute error for price
|
||||
'prediction_mte': 0.0, # mean time error seconds
|
||||
'last_training_time': None
|
||||
}
|
||||
|
||||
@ -114,6 +134,140 @@ class ExtremaTrainer:
|
||||
logger.info(f"Window size: {window_size}, Context update frequency: {self.context_update_frequency}s")
|
||||
logger.info(f"Checkpoint management: {enable_checkpoints}, Model name: {model_name}")
|
||||
|
||||
# Next pivot prediction management
|
||||
self.prediction_window_seconds = 300 # cap at 5 minutes
|
||||
self.pending_predictions: Dict[str, deque] = {symbol: deque(maxlen=200) for symbol in symbols}
|
||||
self.last_prediction: Dict[str, Optional[PredictedPivot]] = {symbol: None for symbol in symbols}
|
||||
|
||||
# === Prediction API ===
|
||||
def predict_next_pivot(self, symbol: str, now: Optional[datetime] = None, current_price: Optional[float] = None) -> Optional[PredictedPivot]:
|
||||
"""Predict next pivot point (time, price) within 5 minutes using real context.
|
||||
|
||||
Strategy (baseline, fully real-data-driven):
|
||||
- Determine last detected extrema type from recent detections; target the opposite type next.
|
||||
- Estimate horizon by median time gap between recent extrema (capped to 300s, floored at 30s).
|
||||
- Estimate amplitude by median absolute price change between recent extrema; project from current_price in the direction implied by target type.
|
||||
- Confidence derived from recent detection confidence averages (bounded).
|
||||
"""
|
||||
try:
|
||||
if symbol not in self.detected_extrema:
|
||||
return None
|
||||
now = now or datetime.now()
|
||||
|
||||
# Use current price from provider if not passed
|
||||
if current_price is None:
|
||||
try:
|
||||
if hasattr(self.data_provider, 'get_current_price'):
|
||||
current_price = self.data_provider.get_current_price(symbol) or 0.0
|
||||
except Exception:
|
||||
current_price = 0.0
|
||||
if not current_price or current_price <= 0:
|
||||
return None
|
||||
|
||||
recent = list(self.detected_extrema[symbol])[-10:]
|
||||
if not recent:
|
||||
return None
|
||||
|
||||
# Determine last extrema
|
||||
last_ext = recent[-1]
|
||||
target_type = 'top' if last_ext.extrema_type == 'bottom' else 'bottom'
|
||||
|
||||
# Estimate horizon as median delta between last extrema timestamps
|
||||
gaps = []
|
||||
for i in range(1, len(recent)):
|
||||
gaps.append((recent[i].timestamp - recent[i-1].timestamp).total_seconds())
|
||||
median_gap = int(np.median(gaps)) if gaps else 60
|
||||
horizon_s = max(30, min(self.prediction_window_seconds, median_gap))
|
||||
|
||||
# Estimate amplitude as median absolute change between extrema
|
||||
price_changes = []
|
||||
for i in range(1, len(recent)):
|
||||
price_changes.append(abs(recent[i].price - recent[i-1].price))
|
||||
median_amp = float(np.median(price_changes)) if price_changes else current_price * 0.002 # ~0.2%
|
||||
|
||||
predicted_price = current_price + (median_amp if target_type == 'top' else -median_amp)
|
||||
predicted_time = now + timedelta(seconds=horizon_s)
|
||||
|
||||
# Confidence from average of recent detection confidences
|
||||
conf_vals = [e.confidence for e in recent]
|
||||
confidence = float(np.mean(conf_vals)) if conf_vals else 0.5
|
||||
confidence = max(0.1, min(0.95, confidence))
|
||||
|
||||
pred = PredictedPivot(
|
||||
symbol=symbol,
|
||||
created_at=now,
|
||||
current_price=current_price,
|
||||
predicted_time=predicted_time,
|
||||
predicted_price=predicted_price,
|
||||
horizon_seconds=horizon_s,
|
||||
target_type=target_type,
|
||||
confidence=confidence
|
||||
)
|
||||
self.pending_predictions[symbol].append(pred)
|
||||
self.last_prediction[symbol] = pred
|
||||
return pred
|
||||
except Exception as e:
|
||||
logger.error(f"Error predicting next pivot for {symbol}: {e}")
|
||||
return None
|
||||
|
||||
def get_latest_prediction(self, symbol: str) -> Optional[PredictedPivot]:
|
||||
return self.last_prediction.get(symbol)
|
||||
|
||||
def evaluate_pending_predictions(self, symbol: str) -> int:
|
||||
"""Evaluate pending predictions within the 5-minute window using detected extrema.
|
||||
Returns number of evaluations performed.
|
||||
"""
|
||||
try:
|
||||
if symbol not in self.pending_predictions:
|
||||
return 0
|
||||
now = datetime.now()
|
||||
evaluated = 0
|
||||
# Build a quick index of detected extrema within last 10 minutes
|
||||
recent_extrema = [e for e in self.detected_extrema[symbol] if (now - e.timestamp).total_seconds() <= 600]
|
||||
for pred in list(self.pending_predictions[symbol]):
|
||||
if pred.evaluated:
|
||||
continue
|
||||
# If evaluation horizon passed, evaluate against nearest extrema in time
|
||||
if (now - pred.created_at).total_seconds() >= min(self.prediction_window_seconds, pred.horizon_seconds):
|
||||
# Find extrema closest in time after creation
|
||||
candidate = None
|
||||
min_dt = None
|
||||
for e in recent_extrema:
|
||||
if e.timestamp >= pred.created_at and e.extrema_type == pred.target_type:
|
||||
dt = abs((e.timestamp - pred.predicted_time).total_seconds())
|
||||
if min_dt is None or dt < min_dt:
|
||||
min_dt = dt
|
||||
candidate = e
|
||||
if candidate is not None:
|
||||
price_err = abs(candidate.price - pred.predicted_price)
|
||||
time_err = int(abs((candidate.timestamp - pred.predicted_time).total_seconds()))
|
||||
# Decide success with simple thresholds
|
||||
price_tol = max(0.001 * pred.current_price, 0.5) # 0.1% or $0.5
|
||||
time_tol = 90 # 1.5 minutes
|
||||
success = (price_err <= price_tol) and (time_err <= time_tol)
|
||||
pred.evaluated = True
|
||||
pred.success = success
|
||||
pred.error_abs = price_err
|
||||
pred.time_error_s = time_err
|
||||
|
||||
self.training_stats['prediction_evaluations'] += 1
|
||||
if success:
|
||||
self.training_stats['prediction_successes'] += 1
|
||||
# Update running means
|
||||
n = self.training_stats['prediction_evaluations']
|
||||
prev_mae = self.training_stats['prediction_mae']
|
||||
prev_mte = self.training_stats['prediction_mte']
|
||||
self.training_stats['prediction_mae'] = ((prev_mae * (n - 1)) + price_err) / n
|
||||
self.training_stats['prediction_mte'] = ((prev_mte * (n - 1)) + time_err) / n
|
||||
evaluated += 1
|
||||
# Optionally checkpoint on batch
|
||||
if evaluated > 0:
|
||||
self.save_checkpoint(force_save=False)
|
||||
return evaluated
|
||||
except Exception as e:
|
||||
logger.error(f"Error evaluating predictions for {symbol}: {e}")
|
||||
return 0
|
||||
|
||||
def load_best_checkpoint(self):
|
||||
"""Load the best checkpoint for this extrema trainer"""
|
||||
try:
|
||||
@ -182,6 +336,10 @@ class ExtremaTrainer:
|
||||
symbol: list(extrema_deque)
|
||||
for symbol, extrema_deque in self.detected_extrema.items()
|
||||
},
|
||||
'last_prediction': {
|
||||
symbol: (self._serialize_prediction(pred) if pred else None)
|
||||
for symbol, pred in self.last_prediction.items()
|
||||
},
|
||||
'window_size': self.window_size,
|
||||
'symbols': self.symbols
|
||||
}
|
||||
@ -216,6 +374,25 @@ class ExtremaTrainer:
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving ExtremaTrainer checkpoint: {e}")
|
||||
return False
|
||||
|
||||
def _serialize_prediction(self, pred: PredictedPivot) -> Dict[str, Any]:
|
||||
try:
|
||||
return {
|
||||
'symbol': pred.symbol,
|
||||
'created_at': pred.created_at.isoformat(),
|
||||
'current_price': pred.current_price,
|
||||
'predicted_time': pred.predicted_time.isoformat(),
|
||||
'predicted_price': pred.predicted_price,
|
||||
'horizon_seconds': pred.horizon_seconds,
|
||||
'target_type': pred.target_type,
|
||||
'confidence': pred.confidence,
|
||||
'evaluated': pred.evaluated,
|
||||
'success': pred.success,
|
||||
'error_abs': pred.error_abs,
|
||||
'time_error_s': pred.time_error_s,
|
||||
}
|
||||
except Exception:
|
||||
return {}
|
||||
|
||||
def initialize_context_data(self) -> Dict[str, bool]:
|
||||
"""Initialize 200-candle 1m context data for all symbols"""
|
||||
|
@ -976,15 +976,21 @@ class TradingOrchestrator:
|
||||
# The presence of features indicates a signal. We'll return a generic HOLD
|
||||
# with a neutral confidence. This can be refined if ExtremaTrainer provides
|
||||
# more specific BUY/SELL signals directly.
|
||||
return {
|
||||
"action": "HOLD",
|
||||
"confidence": 0.5,
|
||||
"probabilities": {
|
||||
"BUY": 0.33,
|
||||
"SELL": 0.33,
|
||||
"HOLD": 0.34,
|
||||
},
|
||||
}
|
||||
# Provide next-pivot prediction vector capped at 5 min
|
||||
pred = self.model.predict_next_pivot(symbol=symbol)
|
||||
if pred:
|
||||
return {
|
||||
"action": "HOLD",
|
||||
"confidence": pred.confidence,
|
||||
"prediction": {
|
||||
"target_type": pred.target_type,
|
||||
"predicted_time": pred.predicted_time,
|
||||
"predicted_price": pred.predicted_price,
|
||||
"horizon_seconds": pred.horizon_seconds,
|
||||
},
|
||||
}
|
||||
# Fallback neutral
|
||||
return {"action": "HOLD", "confidence": 0.5}
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
|
Reference in New Issue
Block a user