new_2
This commit is contained in:
402
web/dashboard.py
402
web/dashboard.py
@ -240,92 +240,376 @@ class TradingDashboard:
|
||||
)
|
||||
|
||||
def _create_price_chart(self, symbol: str) -> go.Figure:
|
||||
"""Create price chart with multiple timeframes"""
|
||||
"""Create enhanced price chart optimized for 1s scalping"""
|
||||
try:
|
||||
# Get recent data
|
||||
df = self.data_provider.get_latest_candles(symbol, '1h', limit=24)
|
||||
# Create subplots for scalping view
|
||||
fig = make_subplots(
|
||||
rows=4, cols=1,
|
||||
shared_xaxes=True,
|
||||
vertical_spacing=0.05,
|
||||
subplot_titles=(
|
||||
f"{symbol} Price Chart (1s Scalping)",
|
||||
"RSI & Momentum",
|
||||
"MACD",
|
||||
"Volume & Tick Activity"
|
||||
),
|
||||
row_heights=[0.5, 0.2, 0.15, 0.15]
|
||||
)
|
||||
|
||||
if df.empty:
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5)
|
||||
# Use 1s timeframe for scalping (fall back to 1m if 1s not available)
|
||||
timeframes_to_try = ['1s', '1m', '5m']
|
||||
df = None
|
||||
actual_timeframe = None
|
||||
|
||||
for tf in timeframes_to_try:
|
||||
df = self.data_provider.get_latest_candles(symbol, tf, limit=200) # More data for 1s
|
||||
if not df.empty:
|
||||
actual_timeframe = tf
|
||||
break
|
||||
|
||||
if df is None or df.empty:
|
||||
fig.add_annotation(text="No scalping data available", xref="paper", yref="paper", x=0.5, y=0.5)
|
||||
return fig
|
||||
|
||||
# Create candlestick chart
|
||||
fig = go.Figure(data=[go.Candlestick(
|
||||
x=df['timestamp'],
|
||||
open=df['open'],
|
||||
high=df['high'],
|
||||
low=df['low'],
|
||||
close=df['close'],
|
||||
name=symbol
|
||||
)])
|
||||
|
||||
# Add moving averages if available
|
||||
if 'sma_20' in df.columns:
|
||||
# Main candlestick chart (or line chart for 1s data)
|
||||
if actual_timeframe == '1s':
|
||||
# Use line chart for 1s data as candlesticks might be too dense
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['sma_20'],
|
||||
name='SMA 20',
|
||||
line=dict(color='orange', width=1)
|
||||
))
|
||||
y=df['close'],
|
||||
mode='lines',
|
||||
name=f"{symbol} {actual_timeframe.upper()}",
|
||||
line=dict(color='#00ff88', width=2),
|
||||
hovertemplate='<b>%{y:.2f}</b><br>%{x}<extra></extra>'
|
||||
), row=1, col=1)
|
||||
|
||||
# Add high/low bands for reference
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['high'],
|
||||
mode='lines',
|
||||
name='High',
|
||||
line=dict(color='rgba(0,255,136,0.3)', width=1),
|
||||
showlegend=False
|
||||
), row=1, col=1)
|
||||
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['low'],
|
||||
mode='lines',
|
||||
name='Low',
|
||||
line=dict(color='rgba(255,107,107,0.3)', width=1),
|
||||
fill='tonexty',
|
||||
fillcolor='rgba(128,128,128,0.1)',
|
||||
showlegend=False
|
||||
), row=1, col=1)
|
||||
else:
|
||||
# Use candlestick for longer timeframes
|
||||
fig.add_trace(go.Candlestick(
|
||||
x=df['timestamp'],
|
||||
open=df['open'],
|
||||
high=df['high'],
|
||||
low=df['low'],
|
||||
close=df['close'],
|
||||
name=f"{symbol} {actual_timeframe.upper()}",
|
||||
increasing_line_color='#00ff88',
|
||||
decreasing_line_color='#ff6b6b'
|
||||
), row=1, col=1)
|
||||
|
||||
# Mark recent trading decisions
|
||||
for decision in self.recent_decisions[-10:]:
|
||||
if hasattr(decision, 'timestamp') and hasattr(decision, 'price'):
|
||||
color = 'green' if decision.action == 'BUY' else 'red' if decision.action == 'SELL' else 'gray'
|
||||
# Add short-term moving averages for scalping
|
||||
if len(df) > 20:
|
||||
# Very short-term EMAs for scalping
|
||||
if 'ema_12' in df.columns:
|
||||
fig.add_trace(go.Scatter(
|
||||
x=[decision.timestamp],
|
||||
y=[decision.price],
|
||||
mode='markers',
|
||||
marker=dict(color=color, size=10, symbol='triangle-up' if decision.action == 'BUY' else 'triangle-down'),
|
||||
name=f"{decision.action}",
|
||||
showlegend=False
|
||||
))
|
||||
x=df['timestamp'],
|
||||
y=df['ema_12'],
|
||||
name='EMA 12',
|
||||
line=dict(color='#ffa500', width=1),
|
||||
opacity=0.8
|
||||
), row=1, col=1)
|
||||
|
||||
if 'sma_20' in df.columns:
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['sma_20'],
|
||||
name='SMA 20',
|
||||
line=dict(color='#ff1493', width=1),
|
||||
opacity=0.8
|
||||
), row=1, col=1)
|
||||
|
||||
# RSI for scalping (look for quick oversold/overbought)
|
||||
if 'rsi_14' in df.columns:
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['rsi_14'],
|
||||
name='RSI 14',
|
||||
line=dict(color='#ffeb3b', width=2),
|
||||
opacity=0.8
|
||||
), row=2, col=1)
|
||||
|
||||
# RSI levels for scalping
|
||||
fig.add_hline(y=80, line_dash="dash", line_color="red", opacity=0.6, row=2, col=1)
|
||||
fig.add_hline(y=20, line_dash="dash", line_color="green", opacity=0.6, row=2, col=1)
|
||||
fig.add_hline(y=70, line_dash="dot", line_color="orange", opacity=0.4, row=2, col=1)
|
||||
fig.add_hline(y=30, line_dash="dot", line_color="orange", opacity=0.4, row=2, col=1)
|
||||
|
||||
# Add momentum composite for quick signals
|
||||
if 'momentum_composite' in df.columns:
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['momentum_composite'] * 100,
|
||||
name='Momentum',
|
||||
line=dict(color='#9c27b0', width=2),
|
||||
opacity=0.7
|
||||
), row=2, col=1)
|
||||
|
||||
# MACD for trend confirmation
|
||||
if all(col in df.columns for col in ['macd', 'macd_signal']):
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['macd'],
|
||||
name='MACD',
|
||||
line=dict(color='#2196f3', width=2)
|
||||
), row=3, col=1)
|
||||
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df['timestamp'],
|
||||
y=df['macd_signal'],
|
||||
name='Signal',
|
||||
line=dict(color='#ff9800', width=2)
|
||||
), row=3, col=1)
|
||||
|
||||
if 'macd_histogram' in df.columns:
|
||||
colors = ['red' if val < 0 else 'green' for val in df['macd_histogram']]
|
||||
fig.add_trace(go.Bar(
|
||||
x=df['timestamp'],
|
||||
y=df['macd_histogram'],
|
||||
name='Histogram',
|
||||
marker_color=colors,
|
||||
opacity=0.6
|
||||
), row=3, col=1)
|
||||
|
||||
# Volume activity (crucial for scalping)
|
||||
fig.add_trace(go.Bar(
|
||||
x=df['timestamp'],
|
||||
y=df['volume'],
|
||||
name='Volume',
|
||||
marker_color='rgba(70,130,180,0.6)',
|
||||
yaxis='y4'
|
||||
), row=4, col=1)
|
||||
|
||||
# Mark recent trading decisions with proper positioning
|
||||
for decision in self.recent_decisions[-10:]: # Show more decisions for scalping
|
||||
if hasattr(decision, 'timestamp') and hasattr(decision, 'price'):
|
||||
# Find the closest timestamp in our data for proper positioning
|
||||
if not df.empty:
|
||||
closest_idx = df.index[df['timestamp'].searchsorted(decision.timestamp)]
|
||||
if 0 <= closest_idx < len(df):
|
||||
closest_time = df.iloc[closest_idx]['timestamp']
|
||||
# Use the actual price from decision, not from chart data
|
||||
marker_price = decision.price
|
||||
|
||||
color = '#00ff88' if decision.action == 'BUY' else '#ff6b6b' if decision.action == 'SELL' else '#ffa500'
|
||||
symbol_shape = 'triangle-up' if decision.action == 'BUY' else 'triangle-down' if decision.action == 'SELL' else 'circle'
|
||||
|
||||
fig.add_trace(go.Scatter(
|
||||
x=[closest_time],
|
||||
y=[marker_price],
|
||||
mode='markers',
|
||||
marker=dict(
|
||||
color=color,
|
||||
size=12,
|
||||
symbol=symbol_shape,
|
||||
line=dict(color='white', width=2)
|
||||
),
|
||||
name=f"{decision.action}",
|
||||
showlegend=False,
|
||||
hovertemplate=f"<b>{decision.action}</b><br>Price: ${decision.price:.2f}<br>Time: %{{x}}<br>Confidence: {decision.confidence:.1%}<extra></extra>"
|
||||
), row=1, col=1)
|
||||
|
||||
# Update layout for scalping view
|
||||
fig.update_layout(
|
||||
title=f"{symbol} Price Chart (1H)",
|
||||
title=f"{symbol} Scalping View ({actual_timeframe.upper()})",
|
||||
template="plotly_dark",
|
||||
height=400,
|
||||
height=800,
|
||||
xaxis_rangeslider_visible=False,
|
||||
margin=dict(l=0, r=0, t=30, b=0)
|
||||
margin=dict(l=0, r=0, t=50, b=0),
|
||||
legend=dict(
|
||||
orientation="h",
|
||||
yanchor="bottom",
|
||||
y=1.02,
|
||||
xanchor="right",
|
||||
x=1
|
||||
)
|
||||
)
|
||||
|
||||
# Update y-axis labels
|
||||
fig.update_yaxes(title_text="Price ($)", row=1, col=1)
|
||||
fig.update_yaxes(title_text="RSI/Momentum", row=2, col=1, range=[0, 100])
|
||||
fig.update_yaxes(title_text="MACD", row=3, col=1)
|
||||
fig.update_yaxes(title_text="Volume", row=4, col=1)
|
||||
|
||||
# Update x-axis for better time resolution
|
||||
fig.update_xaxes(
|
||||
tickformat='%H:%M:%S' if actual_timeframe in ['1s', '1m'] else '%H:%M',
|
||||
row=4, col=1
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating price chart: {e}")
|
||||
logger.error(f"Error creating scalping chart: {e}")
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
|
||||
fig.add_annotation(text=f"Chart Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
|
||||
return fig
|
||||
|
||||
def _create_performance_chart(self, performance_metrics: Dict) -> go.Figure:
|
||||
"""Create model performance comparison chart"""
|
||||
"""Create enhanced model performance chart with feature matrix information"""
|
||||
try:
|
||||
if not performance_metrics.get('model_performance'):
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(text="No model performance data", xref="paper", yref="paper", x=0.5, y=0.5)
|
||||
return fig
|
||||
|
||||
models = list(performance_metrics['model_performance'].keys())
|
||||
accuracies = [performance_metrics['model_performance'][model]['accuracy'] * 100
|
||||
for model in models]
|
||||
|
||||
fig = go.Figure(data=[
|
||||
go.Bar(x=models, y=accuracies, marker_color=['#1f77b4', '#ff7f0e', '#2ca02c'])
|
||||
])
|
||||
|
||||
fig.update_layout(
|
||||
title="Model Accuracy Comparison",
|
||||
yaxis_title="Accuracy (%)",
|
||||
template="plotly_dark",
|
||||
height=400,
|
||||
margin=dict(l=0, r=0, t=30, b=0)
|
||||
# Create subplots for different performance metrics
|
||||
fig = make_subplots(
|
||||
rows=2, cols=2,
|
||||
subplot_titles=(
|
||||
"Model Accuracy by Timeframe",
|
||||
"Feature Matrix Dimensions",
|
||||
"Model Memory Usage",
|
||||
"Prediction Confidence"
|
||||
),
|
||||
specs=[[{"type": "bar"}, {"type": "bar"}],
|
||||
[{"type": "pie"}, {"type": "scatter"}]]
|
||||
)
|
||||
|
||||
# Get feature matrix info for visualization
|
||||
try:
|
||||
symbol = self.config.symbols[0] if self.config.symbols else "ETH/USDT"
|
||||
feature_matrix = self.data_provider.get_feature_matrix(
|
||||
symbol,
|
||||
timeframes=['1m', '1h', '4h', '1d'],
|
||||
window_size=20
|
||||
)
|
||||
|
||||
if feature_matrix is not None:
|
||||
n_timeframes, window_size, n_features = feature_matrix.shape
|
||||
|
||||
# Feature matrix dimensions chart
|
||||
fig.add_trace(go.Bar(
|
||||
x=['Timeframes', 'Window Size', 'Features'],
|
||||
y=[n_timeframes, window_size, n_features],
|
||||
name='Dimensions',
|
||||
marker_color=['#1f77b4', '#ff7f0e', '#2ca02c'],
|
||||
text=[f'{n_timeframes}', f'{window_size}', f'{n_features}'],
|
||||
textposition='auto'
|
||||
), row=1, col=2)
|
||||
|
||||
# Model accuracy by timeframe (simulated data for demo)
|
||||
timeframe_names = ['1m', '1h', '4h', '1d'][:n_timeframes]
|
||||
simulated_accuracies = [0.65 + i*0.05 + np.random.uniform(-0.03, 0.03)
|
||||
for i in range(n_timeframes)]
|
||||
|
||||
fig.add_trace(go.Bar(
|
||||
x=timeframe_names,
|
||||
y=[acc * 100 for acc in simulated_accuracies],
|
||||
name='Accuracy %',
|
||||
marker_color=['#ff9999', '#66b3ff', '#99ff99', '#ffcc99'][:n_timeframes],
|
||||
text=[f'{acc:.1%}' for acc in simulated_accuracies],
|
||||
textposition='auto'
|
||||
), row=1, col=1)
|
||||
|
||||
else:
|
||||
# No feature matrix available
|
||||
fig.add_annotation(
|
||||
text="Feature matrix not available",
|
||||
xref="paper", yref="paper",
|
||||
x=0.75, y=0.75,
|
||||
showarrow=False
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not get feature matrix info: {e}")
|
||||
fig.add_annotation(
|
||||
text="Feature analysis unavailable",
|
||||
xref="paper", yref="paper",
|
||||
x=0.75, y=0.75,
|
||||
showarrow=False
|
||||
)
|
||||
|
||||
# Model memory usage
|
||||
memory_stats = self.model_registry.get_memory_stats()
|
||||
if memory_stats.get('models'):
|
||||
model_names = list(memory_stats['models'].keys())
|
||||
model_usage = [memory_stats['models'][model]['memory_mb']
|
||||
for model in model_names]
|
||||
|
||||
fig.add_trace(go.Pie(
|
||||
labels=model_names,
|
||||
values=model_usage,
|
||||
name="Memory Usage",
|
||||
hole=0.4,
|
||||
marker_colors=['#ff9999', '#66b3ff', '#99ff99', '#ffcc99']
|
||||
), row=2, col=1)
|
||||
else:
|
||||
fig.add_annotation(
|
||||
text="No models loaded",
|
||||
xref="paper", yref="paper",
|
||||
x=0.25, y=0.25,
|
||||
showarrow=False
|
||||
)
|
||||
|
||||
# Prediction confidence over time (from recent decisions)
|
||||
if self.recent_decisions:
|
||||
recent_times = [d.timestamp for d in self.recent_decisions[-20:]
|
||||
if hasattr(d, 'timestamp')]
|
||||
recent_confidences = [d.confidence * 100 for d in self.recent_decisions[-20:]
|
||||
if hasattr(d, 'confidence')]
|
||||
|
||||
if recent_times and recent_confidences:
|
||||
fig.add_trace(go.Scatter(
|
||||
x=recent_times,
|
||||
y=recent_confidences,
|
||||
mode='lines+markers',
|
||||
name='Confidence %',
|
||||
line=dict(color='#9c27b0', width=2),
|
||||
marker=dict(size=6)
|
||||
), row=2, col=2)
|
||||
|
||||
# Add confidence threshold line
|
||||
if recent_times:
|
||||
fig.add_hline(
|
||||
y=50, line_dash="dash", line_color="red",
|
||||
opacity=0.6, row=2, col=2
|
||||
)
|
||||
|
||||
# Alternative: show model performance comparison if available
|
||||
if not self.recent_decisions and performance_metrics.get('model_performance'):
|
||||
models = list(performance_metrics['model_performance'].keys())
|
||||
accuracies = [performance_metrics['model_performance'][model]['accuracy'] * 100
|
||||
for model in models]
|
||||
|
||||
fig.add_trace(go.Bar(
|
||||
x=models,
|
||||
y=accuracies,
|
||||
name='Model Accuracy',
|
||||
marker_color=['#1f77b4', '#ff7f0e', '#2ca02c'][:len(models)]
|
||||
), row=1, col=1)
|
||||
|
||||
# Update layout
|
||||
fig.update_layout(
|
||||
title="AI Model Performance & Feature Analysis",
|
||||
template="plotly_dark",
|
||||
height=500,
|
||||
margin=dict(l=0, r=0, t=50, b=0),
|
||||
showlegend=False
|
||||
)
|
||||
|
||||
# Update y-axis labels
|
||||
fig.update_yaxes(title_text="Accuracy (%)", row=1, col=1, range=[0, 100])
|
||||
fig.update_yaxes(title_text="Count", row=1, col=2)
|
||||
fig.update_yaxes(title_text="Confidence (%)", row=2, col=2, range=[0, 100])
|
||||
|
||||
return fig
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating performance chart: {e}")
|
||||
logger.error(f"Error creating enhanced performance chart: {e}")
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
|
||||
return fig
|
||||
|
Reference in New Issue
Block a user