trying to run enhanced training system
This commit is contained in:
@@ -159,8 +159,7 @@ class CleanTradingDashboard:
|
||||
if orchestrator is None:
|
||||
self.orchestrator = TradingOrchestrator(
|
||||
data_provider=self.data_provider,
|
||||
enhanced_rl_training=True,
|
||||
model_registry={}
|
||||
enhanced_rl_training=True
|
||||
)
|
||||
logger.debug("Using unified Trading Orchestrator with full ML capabilities")
|
||||
else:
|
||||
|
@@ -1,814 +1,261 @@
|
||||
"""
|
||||
Models Training Panel
|
||||
|
||||
Lightweight panel used by the dashboard to render training metrics.
|
||||
No synthetic data is shown; it only renders what the orchestrator provides.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
from dash import html
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ModelsTrainingPanel:
|
||||
"""Simple training panel wrapper used by the dashboard."""
|
||||
|
||||
def __init__(self, orchestrator: Any):
|
||||
self.orchestrator = orchestrator
|
||||
|
||||
def render(self):
|
||||
try:
|
||||
# Try to pull basic stats if orchestrator exposes them
|
||||
stats = getattr(self.orchestrator, "model_statistics", {}) if self.orchestrator else {}
|
||||
if not stats:
|
||||
return html.Div([
|
||||
html.Div("No training metrics available", className="text-muted small")
|
||||
])
|
||||
|
||||
rows = []
|
||||
for name, s in stats.items():
|
||||
try:
|
||||
total = getattr(s, "total_inferences", 0)
|
||||
avg_ms = getattr(s, "average_inference_time_ms", 0.0)
|
||||
last_pred = getattr(s, "last_prediction", None)
|
||||
last_conf = getattr(s, "last_confidence", None)
|
||||
rows.append(html.Tr([
|
||||
html.Td(name),
|
||||
html.Td(str(total)),
|
||||
html.Td(f"{avg_ms:.1f}"),
|
||||
html.Td(str(last_pred) if last_pred is not None else ""),
|
||||
html.Td(f"{last_conf:.3f}" if last_conf is not None else "")
|
||||
]))
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
table = html.Table([
|
||||
html.Thead(html.Tr([
|
||||
html.Th("Model"), html.Th("Inferences"), html.Th("Avg ms"), html.Th("Last"), html.Th("Conf")
|
||||
])),
|
||||
html.Tbody(rows)
|
||||
], className="table table-sm table-striped mb-0")
|
||||
|
||||
return html.Div(table)
|
||||
except Exception as e:
|
||||
logger.error(f"Error rendering training panel: {e}")
|
||||
return html.Div([html.Div("Error loading training panel", className="text-danger small")])
|
||||
|
||||
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Models & Training Progress Panel - Clean Implementation
|
||||
Displays real-time model status, training metrics, and performance data
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Any
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Dict, Any, List, Optional
|
||||
from datetime import datetime
|
||||
from dash import html, dcc
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ModelsTrainingPanel:
|
||||
"""Clean implementation of the Models & Training Progress panel"""
|
||||
|
||||
"""Clean implementation of the Models & Training Progress panel.
|
||||
- Uses orchestrator.get_model_statistics_summary() and model_states
|
||||
- No synthetic or placeholder data; shows empty when unavailable
|
||||
- Avoids duplicate class definitions and invalid imports
|
||||
"""
|
||||
|
||||
def __init__(self, orchestrator=None):
|
||||
self.orchestrator = orchestrator
|
||||
self.last_update = None
|
||||
|
||||
|
||||
def create_panel(self) -> html.Div:
|
||||
"""Create the main Models & Training Progress panel"""
|
||||
try:
|
||||
# Get fresh data from orchestrator
|
||||
panel_data = self._gather_panel_data()
|
||||
|
||||
# Build the panel components
|
||||
content = []
|
||||
|
||||
# Header with refresh button
|
||||
data = self._gather_data()
|
||||
|
||||
content: List[html.Div] = []
|
||||
content.append(self._create_header())
|
||||
|
||||
# Models section
|
||||
if panel_data.get('models'):
|
||||
content.append(self._create_models_section(panel_data['models']))
|
||||
else:
|
||||
content.append(self._create_no_models_message())
|
||||
|
||||
# Training status section
|
||||
if panel_data.get('training_status'):
|
||||
content.append(self._create_training_status_section(panel_data['training_status']))
|
||||
|
||||
# Performance metrics section
|
||||
if panel_data.get('performance_metrics'):
|
||||
content.append(self._create_performance_section(panel_data['performance_metrics']))
|
||||
|
||||
|
||||
content.append(self._create_models_section(data.get("models", {})))
|
||||
|
||||
if data.get("training_status"):
|
||||
content.append(self._create_training_status_section(data["training_status"]))
|
||||
|
||||
if data.get("system_metrics"):
|
||||
content.append(self._create_system_metrics_section(data["system_metrics"]))
|
||||
|
||||
return html.Div(content, id="training-metrics")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating models training panel: {e}")
|
||||
return html.Div([
|
||||
html.P(f"Error loading training panel: {str(e)}", className="text-danger small")
|
||||
], id="training-metrics")
|
||||
|
||||
def _gather_panel_data(self) -> Dict[str, Any]:
|
||||
"""Gather all data needed for the panel from orchestrator and other sources"""
|
||||
data = {
|
||||
'models': {},
|
||||
'training_status': {},
|
||||
'performance_metrics': {},
|
||||
'last_update': datetime.now().strftime('%H:%M:%S')
|
||||
}
|
||||
|
||||
|
||||
def _gather_data(self) -> Dict[str, Any]:
|
||||
result: Dict[str, Any] = {"models": {}, "training_status": {}, "system_metrics": {}}
|
||||
if not self.orchestrator:
|
||||
logger.warning("No orchestrator available for training panel")
|
||||
return data
|
||||
|
||||
return result
|
||||
try:
|
||||
# Get model registry information
|
||||
if hasattr(self.orchestrator, 'model_registry') and self.orchestrator.model_registry:
|
||||
registered_models = self.orchestrator.model_registry.get_all_models()
|
||||
for model_name, model_info in registered_models.items():
|
||||
data['models'][model_name] = self._extract_model_data(model_name, model_info)
|
||||
|
||||
# Add decision fusion model if it exists (check multiple sources)
|
||||
decision_fusion_added = False
|
||||
|
||||
# Check if it's in the model registry
|
||||
if hasattr(self.orchestrator, 'model_registry') and self.orchestrator.model_registry:
|
||||
registered_models = self.orchestrator.model_registry.get_all_models()
|
||||
if 'decision_fusion' in registered_models:
|
||||
data['models']['decision_fusion'] = self._extract_decision_fusion_data()
|
||||
decision_fusion_added = True
|
||||
|
||||
# If not in registry, check if decision fusion network exists
|
||||
if not decision_fusion_added and hasattr(self.orchestrator, 'decision_fusion_network') and self.orchestrator.decision_fusion_network:
|
||||
data['models']['decision_fusion'] = self._extract_decision_fusion_data()
|
||||
decision_fusion_added = True
|
||||
|
||||
# If still not added, check if decision fusion is enabled
|
||||
if not decision_fusion_added and hasattr(self.orchestrator, 'decision_fusion_enabled') and self.orchestrator.decision_fusion_enabled:
|
||||
data['models']['decision_fusion'] = self._extract_decision_fusion_data()
|
||||
decision_fusion_added = True
|
||||
|
||||
# Add COB RL model if it exists but wasn't captured in registry
|
||||
if 'cob_rl_model' not in data['models'] and hasattr(self.orchestrator, 'cob_rl_model'):
|
||||
data['models']['cob_rl_model'] = self._extract_cob_rl_data()
|
||||
|
||||
# Get training status
|
||||
data['training_status'] = self._extract_training_status()
|
||||
|
||||
# Get performance metrics
|
||||
data['performance_metrics'] = self._extract_performance_metrics()
|
||||
|
||||
# Model statistics summary (serializable)
|
||||
stats_summary: Dict[str, Dict[str, Any]] = {}
|
||||
if hasattr(self.orchestrator, "get_model_statistics_summary"):
|
||||
stats = self.orchestrator.get_model_statistics_summary()
|
||||
if isinstance(stats, dict):
|
||||
stats_summary = stats
|
||||
|
||||
# Model states (for best_loss and checkpoint flags)
|
||||
model_states: Dict[str, Dict[str, Any]] = getattr(self.orchestrator, "model_states", {}) or {}
|
||||
|
||||
# Build models block from stats_summary
|
||||
for model_name, s in stats_summary.items():
|
||||
model_info: Dict[str, Any] = {}
|
||||
try:
|
||||
# Status: active if we have any inference info
|
||||
total_inf = int(s.get("total_inferences", 0) or 0)
|
||||
status = "active" if (total_inf > 0 or s.get("last_inference_time")) else "registered"
|
||||
|
||||
# Last prediction
|
||||
last_pred_action = s.get("last_prediction")
|
||||
last_confidence = s.get("last_confidence")
|
||||
last_inference_time = s.get("last_inference_time")
|
||||
|
||||
# Loss metrics
|
||||
loss_metrics = {
|
||||
"current_loss": s.get("current_loss"),
|
||||
"best_loss": s.get("best_loss"),
|
||||
}
|
||||
|
||||
# Timing metrics
|
||||
timing_metrics = {
|
||||
"inferences_per_second": s.get("inference_rate_per_second"),
|
||||
"last_inference": last_inference_time,
|
||||
"last_training": s.get("last_training_time"),
|
||||
}
|
||||
|
||||
# Checkpoint flags from orchestrator.model_states if present
|
||||
ckpt_loaded = False
|
||||
ckpt_failed = False
|
||||
if model_states and model_name in model_states:
|
||||
ckpt_loaded = bool(model_states[model_name].get("checkpoint_loaded", False))
|
||||
ckpt_failed = bool(model_states[model_name].get("checkpoint_failed", False))
|
||||
|
||||
model_info = {
|
||||
"name": model_name,
|
||||
"status": status,
|
||||
"parameters": 0, # unknown; do not synthesize
|
||||
"last_prediction": {
|
||||
"action": last_pred_action if last_pred_action is not None else "",
|
||||
"confidence": last_confidence if last_confidence is not None else None,
|
||||
"timestamp": last_inference_time if last_inference_time else "",
|
||||
},
|
||||
"training_enabled": True,
|
||||
"inference_enabled": True,
|
||||
"routing_enabled": True,
|
||||
"checkpoint_loaded": ckpt_loaded,
|
||||
"checkpoint_failed": ckpt_failed,
|
||||
"loss_metrics": loss_metrics,
|
||||
"timing_metrics": timing_metrics,
|
||||
"signal_stats": {},
|
||||
}
|
||||
except Exception as e:
|
||||
logger.debug(f"Error building model info for {model_name}: {e}")
|
||||
model_info = {"name": model_name, "status": "error", "error": str(e)}
|
||||
|
||||
result["models"][model_name] = model_info
|
||||
|
||||
# Enhanced training system status
|
||||
training_status: Dict[str, Any] = {}
|
||||
try:
|
||||
if hasattr(self.orchestrator, "get_enhanced_training_stats"):
|
||||
training_status = self.orchestrator.get_enhanced_training_stats() or {}
|
||||
except Exception as e:
|
||||
logger.debug(f"Enhanced training stats unavailable: {e}")
|
||||
result["training_status"] = training_status
|
||||
|
||||
# System metrics (decision fusion, cob integration)
|
||||
system_metrics = {
|
||||
"decision_fusion_active": bool(getattr(self.orchestrator, "decision_fusion_enabled", False)),
|
||||
"cob_integration_active": bool(getattr(self.orchestrator, "cob_integration", None) is not None),
|
||||
"symbols_tracking": len(getattr(getattr(self.orchestrator, "cob_integration", None), "symbols", []) or []),
|
||||
}
|
||||
result["system_metrics"] = system_metrics
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error(f"Error gathering panel data: {e}")
|
||||
data['error'] = str(e)
|
||||
|
||||
return data
|
||||
|
||||
def _extract_model_data(self, model_name: str, model_info: Any) -> Dict[str, Any]:
|
||||
"""Extract relevant data for a single model"""
|
||||
try:
|
||||
model_data = {
|
||||
'name': model_name,
|
||||
'status': 'unknown',
|
||||
'parameters': 0,
|
||||
'last_prediction': {},
|
||||
'training_enabled': True,
|
||||
'inference_enabled': True,
|
||||
'checkpoint_loaded': False,
|
||||
'loss_metrics': {},
|
||||
'timing_metrics': {}
|
||||
}
|
||||
|
||||
# Get model status from orchestrator - check if model is actually loaded and active
|
||||
if hasattr(self.orchestrator, 'get_model_state'):
|
||||
model_state = self.orchestrator.get_model_state(model_name)
|
||||
model_data['status'] = 'active' if model_state else 'inactive'
|
||||
|
||||
# Check actual inference activity from logs/statistics
|
||||
if hasattr(self.orchestrator, 'get_model_statistics'):
|
||||
stats = self.orchestrator.get_model_statistics()
|
||||
if stats and model_name in stats:
|
||||
model_stats = stats[model_name]
|
||||
# Check if model has recent activity (last prediction exists)
|
||||
if hasattr(model_stats, 'last_prediction') and model_stats.last_prediction:
|
||||
model_data['status'] = 'active'
|
||||
elif hasattr(model_stats, 'inferences_per_second') and getattr(model_stats, 'inferences_per_second', 0) > 0:
|
||||
model_data['status'] = 'active'
|
||||
else:
|
||||
model_data['status'] = 'registered' # Registered but not actively inferencing
|
||||
else:
|
||||
model_data['status'] = 'inactive'
|
||||
|
||||
# Check if model is in registry (fallback)
|
||||
if hasattr(self.orchestrator, 'model_registry') and self.orchestrator.model_registry:
|
||||
registered_models = self.orchestrator.model_registry.get_all_models()
|
||||
if model_name in registered_models and model_data['status'] == 'unknown':
|
||||
model_data['status'] = 'registered'
|
||||
|
||||
# Get toggle states
|
||||
if hasattr(self.orchestrator, 'get_model_toggle_state'):
|
||||
toggle_state = self.orchestrator.get_model_toggle_state(model_name)
|
||||
if isinstance(toggle_state, dict):
|
||||
model_data['training_enabled'] = toggle_state.get('training_enabled', True)
|
||||
model_data['inference_enabled'] = toggle_state.get('inference_enabled', True)
|
||||
model_data['routing_enabled'] = toggle_state.get('routing_enabled', True)
|
||||
|
||||
# Get model statistics
|
||||
if hasattr(self.orchestrator, 'get_model_statistics'):
|
||||
stats = self.orchestrator.get_model_statistics()
|
||||
if stats and model_name in stats:
|
||||
model_stats = stats[model_name]
|
||||
|
||||
# Handle both dict and object formats
|
||||
def safe_get(obj, key, default=None):
|
||||
if hasattr(obj, key):
|
||||
return getattr(obj, key, default)
|
||||
elif isinstance(obj, dict):
|
||||
return obj.get(key, default)
|
||||
else:
|
||||
return default
|
||||
|
||||
# Extract loss metrics
|
||||
model_data['loss_metrics'] = {
|
||||
'current_loss': safe_get(model_stats, 'current_loss'),
|
||||
'best_loss': safe_get(model_stats, 'best_loss'),
|
||||
'loss_5ma': safe_get(model_stats, 'loss_5ma'),
|
||||
'improvement': safe_get(model_stats, 'improvement', 0)
|
||||
}
|
||||
|
||||
# Extract timing metrics
|
||||
model_data['timing_metrics'] = {
|
||||
'last_inference': safe_get(model_stats, 'last_inference'),
|
||||
'last_training': safe_get(model_stats, 'last_training'),
|
||||
'inferences_per_second': safe_get(model_stats, 'inferences_per_second', 0),
|
||||
'predictions_24h': safe_get(model_stats, 'predictions_24h', 0)
|
||||
}
|
||||
|
||||
# Extract last prediction
|
||||
last_pred = safe_get(model_stats, 'last_prediction')
|
||||
if last_pred:
|
||||
model_data['last_prediction'] = {
|
||||
'action': safe_get(last_pred, 'action', 'NONE'),
|
||||
'confidence': safe_get(last_pred, 'confidence', 0),
|
||||
'timestamp': safe_get(last_pred, 'timestamp', 'N/A'),
|
||||
'predicted_price': safe_get(last_pred, 'predicted_price'),
|
||||
'price_change': safe_get(last_pred, 'price_change')
|
||||
}
|
||||
|
||||
# Extract model parameters count
|
||||
model_data['parameters'] = safe_get(model_stats, 'parameters', 0)
|
||||
|
||||
# Check checkpoint status from orchestrator model states (more reliable)
|
||||
checkpoint_loaded = False
|
||||
checkpoint_failed = False
|
||||
if hasattr(self.orchestrator, 'model_states'):
|
||||
model_state_mapping = {
|
||||
'dqn_agent': 'dqn',
|
||||
'enhanced_cnn': 'cnn',
|
||||
'cob_rl_model': 'cob_rl',
|
||||
'extrema_trainer': 'extrema_trainer'
|
||||
}
|
||||
state_key = model_state_mapping.get(model_name, model_name)
|
||||
if state_key in self.orchestrator.model_states:
|
||||
checkpoint_loaded = self.orchestrator.model_states[state_key].get('checkpoint_loaded', False)
|
||||
checkpoint_failed = self.orchestrator.model_states[state_key].get('checkpoint_failed', False)
|
||||
|
||||
# If not found in model states, check model stats as fallback
|
||||
if not checkpoint_loaded and not checkpoint_failed:
|
||||
checkpoint_loaded = safe_get(model_stats, 'checkpoint_loaded', False)
|
||||
|
||||
model_data['checkpoint_loaded'] = checkpoint_loaded
|
||||
model_data['checkpoint_failed'] = checkpoint_failed
|
||||
|
||||
# Extract signal generation statistics and real performance data
|
||||
model_data['signal_stats'] = {
|
||||
'buy_signals': safe_get(model_stats, 'buy_signals_count', 0),
|
||||
'sell_signals': safe_get(model_stats, 'sell_signals_count', 0),
|
||||
'hold_signals': safe_get(model_stats, 'hold_signals_count', 0),
|
||||
'total_signals': safe_get(model_stats, 'total_signals', 0),
|
||||
'accuracy': safe_get(model_stats, 'accuracy', 0),
|
||||
'win_rate': safe_get(model_stats, 'win_rate', 0)
|
||||
}
|
||||
|
||||
# Do not inject synthetic performance metrics; rely only on available stats
|
||||
|
||||
return model_data
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting data for model {model_name}: {e}")
|
||||
return {'name': model_name, 'status': 'error', 'error': str(e)}
|
||||
|
||||
def _extract_decision_fusion_data(self) -> Dict[str, Any]:
|
||||
"""Extract data for the decision fusion model"""
|
||||
try:
|
||||
decision_data = {
|
||||
'name': 'decision_fusion',
|
||||
'status': 'active',
|
||||
'parameters': 0,
|
||||
'last_prediction': {},
|
||||
'training_enabled': True,
|
||||
'inference_enabled': True,
|
||||
'checkpoint_loaded': False,
|
||||
'loss_metrics': {},
|
||||
'timing_metrics': {},
|
||||
'signal_stats': {}
|
||||
}
|
||||
|
||||
# Check if decision fusion is actually enabled and working
|
||||
if hasattr(self.orchestrator, 'decision_fusion_enabled'):
|
||||
decision_data['status'] = 'active' if self.orchestrator.decision_fusion_enabled else 'registered'
|
||||
|
||||
# Check if decision fusion network exists
|
||||
if hasattr(self.orchestrator, 'decision_fusion_network') and self.orchestrator.decision_fusion_network:
|
||||
decision_data['status'] = 'active'
|
||||
# Get network parameters
|
||||
if hasattr(self.orchestrator.decision_fusion_network, 'parameters'):
|
||||
decision_data['parameters'] = sum(p.numel() for p in self.orchestrator.decision_fusion_network.parameters())
|
||||
|
||||
# Check decision fusion mode
|
||||
if hasattr(self.orchestrator, 'decision_fusion_mode'):
|
||||
decision_data['mode'] = self.orchestrator.decision_fusion_mode
|
||||
if self.orchestrator.decision_fusion_mode == 'neural':
|
||||
decision_data['status'] = 'active'
|
||||
elif self.orchestrator.decision_fusion_mode == 'programmatic':
|
||||
decision_data['status'] = 'active' # Still active, just using programmatic mode
|
||||
|
||||
# Get decision fusion statistics
|
||||
if hasattr(self.orchestrator, 'get_decision_fusion_stats'):
|
||||
stats = self.orchestrator.get_decision_fusion_stats()
|
||||
if stats:
|
||||
decision_data['loss_metrics']['current_loss'] = stats.get('recent_loss')
|
||||
decision_data['timing_metrics']['decisions_per_second'] = stats.get('decisions_per_second', 0)
|
||||
decision_data['signal_stats'] = {
|
||||
'buy_decisions': stats.get('buy_decisions', 0),
|
||||
'sell_decisions': stats.get('sell_decisions', 0),
|
||||
'hold_decisions': stats.get('hold_decisions', 0),
|
||||
'total_decisions': stats.get('total_decisions', 0),
|
||||
'consensus_rate': stats.get('consensus_rate', 0)
|
||||
}
|
||||
|
||||
# Get decision fusion network parameters
|
||||
if hasattr(self.orchestrator, 'decision_fusion') and self.orchestrator.decision_fusion:
|
||||
if hasattr(self.orchestrator.decision_fusion, 'parameters'):
|
||||
decision_data['parameters'] = sum(p.numel() for p in self.orchestrator.decision_fusion.parameters())
|
||||
|
||||
# Check for decision fusion checkpoint status
|
||||
if hasattr(self.orchestrator, 'model_states') and 'decision_fusion' in self.orchestrator.model_states:
|
||||
df_state = self.orchestrator.model_states['decision_fusion']
|
||||
decision_data['checkpoint_loaded'] = df_state.get('checkpoint_loaded', False)
|
||||
|
||||
return decision_data
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting decision fusion data: {e}")
|
||||
return {'name': 'decision_fusion', 'status': 'error', 'error': str(e)}
|
||||
|
||||
def _extract_cob_rl_data(self) -> Dict[str, Any]:
|
||||
"""Extract data for the COB RL model"""
|
||||
try:
|
||||
cob_data = {
|
||||
'name': 'cob_rl_model',
|
||||
'status': 'registered', # Usually registered but not actively inferencing
|
||||
'parameters': 0,
|
||||
'last_prediction': {},
|
||||
'training_enabled': True,
|
||||
'inference_enabled': True,
|
||||
'checkpoint_loaded': False,
|
||||
'loss_metrics': {},
|
||||
'timing_metrics': {},
|
||||
'signal_stats': {}
|
||||
}
|
||||
|
||||
# Check if COB RL has actual statistics
|
||||
if hasattr(self.orchestrator, 'get_model_statistics'):
|
||||
stats = self.orchestrator.get_model_statistics()
|
||||
if stats and 'cob_rl_model' in stats:
|
||||
cob_stats = stats['cob_rl_model']
|
||||
# Use the safe_get function from above
|
||||
def safe_get(obj, key, default=None):
|
||||
if hasattr(obj, key):
|
||||
return getattr(obj, key, default)
|
||||
elif isinstance(obj, dict):
|
||||
return obj.get(key, default)
|
||||
else:
|
||||
return default
|
||||
|
||||
cob_data['parameters'] = safe_get(cob_stats, 'parameters', 356647429) # Known COB RL size
|
||||
cob_data['status'] = 'active' if safe_get(cob_stats, 'inferences_per_second', 0) > 0 else 'registered'
|
||||
|
||||
# Extract metrics if available
|
||||
cob_data['loss_metrics'] = {
|
||||
'current_loss': safe_get(cob_stats, 'current_loss'),
|
||||
'best_loss': safe_get(cob_stats, 'best_loss'),
|
||||
}
|
||||
|
||||
return cob_data
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting COB RL data: {e}")
|
||||
return {'name': 'cob_rl_model', 'status': 'error', 'error': str(e)}
|
||||
|
||||
def _extract_training_status(self) -> Dict[str, Any]:
|
||||
"""Extract overall training status"""
|
||||
try:
|
||||
status = {
|
||||
'active_sessions': 0,
|
||||
'total_training_steps': 0,
|
||||
'is_training': False,
|
||||
'last_update': 'N/A'
|
||||
}
|
||||
|
||||
# Check if enhanced training system is available
|
||||
if hasattr(self.orchestrator, 'enhanced_training') and self.orchestrator.enhanced_training:
|
||||
enhanced_stats = self.orchestrator.enhanced_training.get_training_statistics()
|
||||
if enhanced_stats:
|
||||
status.update({
|
||||
'is_training': enhanced_stats.get('is_training', False),
|
||||
'training_iteration': enhanced_stats.get('training_iteration', 0),
|
||||
'experience_buffer_size': enhanced_stats.get('experience_buffer_size', 0),
|
||||
'last_update': datetime.now().strftime('%H:%M:%S')
|
||||
})
|
||||
|
||||
return status
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting training status: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
def _extract_performance_metrics(self) -> Dict[str, Any]:
|
||||
"""Extract performance metrics"""
|
||||
try:
|
||||
metrics = {
|
||||
'decision_fusion_active': False,
|
||||
'cob_integration_active': False,
|
||||
'symbols_tracking': 0,
|
||||
'recent_decisions': 0
|
||||
}
|
||||
|
||||
# Check decision fusion status
|
||||
if hasattr(self.orchestrator, 'decision_fusion_enabled'):
|
||||
metrics['decision_fusion_active'] = self.orchestrator.decision_fusion_enabled
|
||||
|
||||
# Check COB integration
|
||||
if hasattr(self.orchestrator, 'cob_integration') and self.orchestrator.cob_integration:
|
||||
metrics['cob_integration_active'] = True
|
||||
if hasattr(self.orchestrator.cob_integration, 'symbols'):
|
||||
metrics['symbols_tracking'] = len(self.orchestrator.cob_integration.symbols)
|
||||
|
||||
return metrics
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting performance metrics: {e}")
|
||||
return {'error': str(e)}
|
||||
|
||||
return result
|
||||
|
||||
def _create_header(self) -> html.Div:
|
||||
"""Create the panel header with title and refresh button"""
|
||||
return html.Div([
|
||||
html.H6([
|
||||
html.I(className="fas fa-brain me-2 text-primary"),
|
||||
"Models & Training Progress"
|
||||
], className="mb-2"),
|
||||
html.Button([
|
||||
html.I(className="fas fa-sync-alt me-1"),
|
||||
"Refresh"
|
||||
], id="refresh-training-metrics-btn", className="btn btn-sm btn-outline-primary mb-2")
|
||||
html.H6([html.I(className="fas fa-brain me-2 text-primary"), "Models & Training Progress"], className="mb-2"),
|
||||
html.Button([html.I(className="fas fa-sync-alt me-1"), "Refresh"], id="refresh-training-metrics-btn", className="btn btn-sm btn-outline-primary mb-2")
|
||||
], className="d-flex justify-content-between align-items-start")
|
||||
|
||||
def _create_models_section(self, models_data: Dict[str, Any]) -> html.Div:
|
||||
"""Create the models section showing each loaded model"""
|
||||
model_cards = []
|
||||
|
||||
for model_name, model_data in models_data.items():
|
||||
if model_data.get('error'):
|
||||
# Error card
|
||||
model_cards.append(html.Div([
|
||||
html.Strong(f"{model_name.upper()}", className="text-danger"),
|
||||
html.P(f"Error: {model_data['error']}", className="text-danger small mb-0")
|
||||
], className="border border-danger rounded p-2 mb-2"))
|
||||
else:
|
||||
model_cards.append(self._create_model_card(model_name, model_data))
|
||||
|
||||
|
||||
def _create_models_section(self, models: Dict[str, Any]) -> html.Div:
|
||||
cards = [self._create_model_card(name, info) for name, info in models.items()]
|
||||
return html.Div([
|
||||
html.H6([
|
||||
html.I(className="fas fa-microchip me-2 text-success"),
|
||||
f"Loaded Models ({len(models_data)})"
|
||||
], className="mb-2"),
|
||||
html.Div(model_cards)
|
||||
html.H6([html.I(className="fas fa-microchip me-2 text-success"), f"Loaded Models ({len(models)})"], className="mb-2"),
|
||||
html.Div(cards)
|
||||
])
|
||||
|
||||
|
||||
def _create_model_card(self, model_name: str, model_data: Dict[str, Any]) -> html.Div:
|
||||
"""Create a card for a single model"""
|
||||
# Status styling
|
||||
status = model_data.get('status', 'unknown')
|
||||
if status == 'active':
|
||||
status_class = "text-success"
|
||||
status_icon = "fas fa-check-circle"
|
||||
status_text = "ACTIVE"
|
||||
elif status == 'registered':
|
||||
status_class = "text-warning"
|
||||
status_icon = "fas fa-circle"
|
||||
status_text = "REGISTERED"
|
||||
elif status == 'inactive':
|
||||
status_class = "text-muted"
|
||||
status_icon = "fas fa-pause-circle"
|
||||
status_text = "INACTIVE"
|
||||
status = model_data.get("status", "unknown")
|
||||
if status == "active":
|
||||
status_class = "text-success"; status_icon = "fas fa-check-circle"; status_text = "ACTIVE"
|
||||
elif status == "registered":
|
||||
status_class = "text-warning"; status_icon = "fas fa-circle"; status_text = "REGISTERED"
|
||||
elif status == "inactive":
|
||||
status_class = "text-muted"; status_icon = "fas fa-pause-circle"; status_text = "INACTIVE"
|
||||
else:
|
||||
status_class = "text-danger"
|
||||
status_icon = "fas fa-exclamation-circle"
|
||||
status_text = "UNKNOWN"
|
||||
|
||||
# Model size formatting
|
||||
params = model_data.get('parameters', 0)
|
||||
if params > 1e9:
|
||||
size_str = f"{params/1e9:.1f}B"
|
||||
elif params > 1e6:
|
||||
size_str = f"{params/1e6:.1f}M"
|
||||
elif params > 1e3:
|
||||
size_str = f"{params/1e3:.1f}K"
|
||||
else:
|
||||
size_str = str(params)
|
||||
|
||||
# Last prediction info
|
||||
last_pred = model_data.get('last_prediction', {})
|
||||
pred_action = last_pred.get('action', 'NONE')
|
||||
pred_confidence = last_pred.get('confidence', 0)
|
||||
pred_time = last_pred.get('timestamp', 'N/A')
|
||||
|
||||
# Loss metrics
|
||||
loss_metrics = model_data.get('loss_metrics', {})
|
||||
current_loss = loss_metrics.get('current_loss')
|
||||
loss_class = "text-success" if current_loss and current_loss < 0.1 else "text-warning" if current_loss and current_loss < 0.5 else "text-danger"
|
||||
|
||||
# Timing metrics
|
||||
timing = model_data.get('timing_metrics', {})
|
||||
|
||||
status_class = "text-danger"; status_icon = "fas fa-exclamation-circle"; status_text = "UNKNOWN"
|
||||
|
||||
last_pred = model_data.get("last_prediction", {})
|
||||
pred_action = last_pred.get("action") or "NONE"
|
||||
pred_confidence = last_pred.get("confidence")
|
||||
pred_time = last_pred.get("timestamp") or "N/A"
|
||||
|
||||
loss_metrics = model_data.get("loss_metrics", {})
|
||||
current_loss = loss_metrics.get("current_loss")
|
||||
best_loss = loss_metrics.get("best_loss")
|
||||
loss_class = (
|
||||
"text-success" if (isinstance(current_loss, (int, float)) and current_loss < 0.1)
|
||||
else "text-warning" if (isinstance(current_loss, (int, float)) and current_loss < 0.5)
|
||||
else "text-danger"
|
||||
) if current_loss is not None else "text-muted"
|
||||
|
||||
timing = model_data.get("timing_metrics", {})
|
||||
rate = timing.get("inferences_per_second")
|
||||
|
||||
return html.Div([
|
||||
# Header with model name and status
|
||||
html.Div([
|
||||
html.Div([
|
||||
html.I(className=f"{status_icon} me-2 {status_class}"),
|
||||
html.Strong(f"{model_name.upper()}", className=status_class),
|
||||
html.Span(f" - {status_text}", className=f"{status_class} small ms-1"),
|
||||
html.Span(f" ({size_str})", className="text-muted small ms-2"),
|
||||
# Show mode for decision fusion
|
||||
*([html.Span(f" [{model_data.get('mode', 'unknown').upper()}]", className="text-info small ms-1")] if model_name == 'decision_fusion' and model_data.get('mode') else []),
|
||||
html.Span(
|
||||
" [CKPT]" if model_data.get('checkpoint_loaded')
|
||||
else " [FAILED]" if model_data.get('checkpoint_failed')
|
||||
else " [FRESH]",
|
||||
className=f"small {'text-success' if model_data.get('checkpoint_loaded') else 'text-danger' if model_data.get('checkpoint_failed') else 'text-warning'} ms-1"
|
||||
)
|
||||
html.Span(" [CKPT]" if model_data.get("checkpoint_loaded") else (" [FAILED]" if model_data.get("checkpoint_failed") else " [FRESH]"), className=f"small {'text-success' if model_data.get('checkpoint_loaded') else 'text-danger' if model_data.get('checkpoint_failed') else 'text-warning'} ms-1")
|
||||
], style={"flex": "1"}),
|
||||
|
||||
# Toggle switches with pattern matching IDs
|
||||
html.Div([
|
||||
html.Div([
|
||||
html.Label("Inf", className="text-muted small me-1", style={"font-size": "10px"}),
|
||||
dcc.Checklist(
|
||||
id={'type': 'model-toggle', 'model': model_name, 'toggle_type': 'inference'},
|
||||
options=[{"label": "", "value": True}],
|
||||
value=[True] if model_data.get('inference_enabled', True) else [],
|
||||
className="form-check-input me-2",
|
||||
style={"transform": "scale(0.7)"}
|
||||
)
|
||||
html.Label("Inf", className="text-muted small me-1", style={"fontSize": "10px"}),
|
||||
dcc.Checklist(id={'type': 'model-toggle', 'model': model_name, 'toggle_type': 'inference'}, options=[{"label": "", "value": True}], value=[True] if model_data.get('inference_enabled', True) else [], className="form-check-input me-2", style={"transform": "scale(0.7)"})
|
||||
], className="d-flex align-items-center me-2"),
|
||||
html.Div([
|
||||
html.Label("Trn", className="text-muted small me-1", style={"font-size": "10px"}),
|
||||
dcc.Checklist(
|
||||
id={'type': 'model-toggle', 'model': model_name, 'toggle_type': 'training'},
|
||||
options=[{"label": "", "value": True}],
|
||||
value=[True] if model_data.get('training_enabled', True) else [],
|
||||
className="form-check-input",
|
||||
style={"transform": "scale(0.7)"}
|
||||
)
|
||||
html.Label("Trn", className="text-muted small me-1", style={"fontSize": "10px"}),
|
||||
dcc.Checklist(id={'type': 'model-toggle', 'model': model_name, 'toggle_type': 'training'}, options=[{"label": "", "value": True}], value=[True] if model_data.get('training_enabled', True) else [], className="form-check-input", style={"transform": "scale(0.7)"})
|
||||
], className="d-flex align-items-center me-2"),
|
||||
html.Div([
|
||||
html.Label("Route", className="text-muted small me-1", style={"font-size": "10px"}),
|
||||
dcc.Checklist(
|
||||
id={'type': 'model-toggle', 'model': model_name, 'toggle_type': 'routing'},
|
||||
options=[{"label": "", "value": True}],
|
||||
value=[True] if model_data.get('routing_enabled', True) else [],
|
||||
className="form-check-input",
|
||||
style={"transform": "scale(0.7)"}
|
||||
)
|
||||
], className="d-flex align-items-center")
|
||||
html.Label("Route", className="text-muted small me-1", style={"fontSize": "10px"}),
|
||||
dcc.Checklist(id={'type': 'model-toggle', 'model': model_name, 'toggle_type': 'routing'}, options=[{"label": "", "value": True}], value=[True] if model_data.get('routing_enabled', True) else [], className="form-check-input", style={"transform": "scale(0.7)"})
|
||||
], className="d-flex align-items-center"),
|
||||
], className="d-flex")
|
||||
], className="d-flex align-items-center mb-2"),
|
||||
|
||||
# Model metrics
|
||||
|
||||
html.Div([
|
||||
# Last prediction
|
||||
html.Div([
|
||||
html.Span("Last: ", className="text-muted small"),
|
||||
html.Span(f"{pred_action}",
|
||||
className=f"small fw-bold {'text-success' if pred_action == 'BUY' else 'text-danger' if pred_action == 'SELL' else 'text-warning'}"),
|
||||
html.Span(f" ({pred_confidence:.1f}%)", className="text-muted small"),
|
||||
html.Span(f"{pred_action}", className=f"small fw-bold {'text-success' if pred_action == 'BUY' else 'text-danger' if pred_action == 'SELL' else 'text-warning'}"),
|
||||
html.Span(f" ({pred_confidence:.1f}%)" if isinstance(pred_confidence, (int, float)) else "", className="text-muted small"),
|
||||
html.Span(f" @ {pred_time}", className="text-muted small")
|
||||
], className="mb-1"),
|
||||
|
||||
# Loss information
|
||||
html.Div([
|
||||
html.Span("Loss: ", className="text-muted small"),
|
||||
html.Span(f"{current_loss:.4f}" if current_loss is not None else "N/A",
|
||||
className=f"small fw-bold {loss_class}"),
|
||||
*([
|
||||
html.Span(" | Best: ", className="text-muted small"),
|
||||
html.Span(f"{loss_metrics.get('best_loss', 0):.4f}", className="text-success small")
|
||||
] if loss_metrics.get('best_loss') is not None else [])
|
||||
html.Span(f"{current_loss:.4f}" if isinstance(current_loss, (int, float)) else "", className=f"small fw-bold {loss_class}"),
|
||||
*([html.Span(" | Best: ", className="text-muted small"), html.Span(f"{best_loss:.4f}", className="text-success small")] if isinstance(best_loss, (int, float)) else [])
|
||||
], className="mb-1"),
|
||||
|
||||
# Timing information
|
||||
html.Div([
|
||||
html.Span("Rate: ", className="text-muted small"),
|
||||
html.Span(f"{timing.get('inferences_per_second', 0):.2f}/s", className="text-info small"),
|
||||
html.Span(" | 24h: ", className="text-muted small"),
|
||||
html.Span(f"{timing.get('predictions_24h', 0)}", className="text-primary small")
|
||||
html.Span(f"{rate:.2f}/s" if isinstance(rate, (int, float)) else "", className="text-info small")
|
||||
], className="mb-1"),
|
||||
|
||||
# Last activity times
|
||||
html.Div([
|
||||
html.Span("Last Inf: ", className="text-muted small"),
|
||||
html.Span(f"{timing.get('last_inference', 'N/A')}", className="text-info small"),
|
||||
html.Span(" | Train: ", className="text-muted small"),
|
||||
html.Span(f"{timing.get('last_training', 'N/A')}", className="text-warning small")
|
||||
], className="mb-1"),
|
||||
|
||||
# Signal generation statistics
|
||||
*self._create_signal_stats_display(model_data.get('signal_stats', {})),
|
||||
|
||||
# Performance metrics
|
||||
*self._create_performance_metrics_display(model_data)
|
||||
])
|
||||
], className="border rounded p-2 mb-2",
|
||||
style={"backgroundColor": "rgba(255,255,255,0.05)" if status == 'active' else "rgba(128,128,128,0.1)"})
|
||||
|
||||
def _create_no_models_message(self) -> html.Div:
|
||||
"""Create message when no models are loaded"""
|
||||
return html.Div([
|
||||
html.H6([
|
||||
html.I(className="fas fa-exclamation-triangle me-2 text-warning"),
|
||||
"No Models Loaded"
|
||||
], className="mb-2"),
|
||||
html.P("No machine learning models are currently loaded. Check orchestrator status.",
|
||||
className="text-muted small")
|
||||
])
|
||||
|
||||
def _create_training_status_section(self, training_status: Dict[str, Any]) -> html.Div:
|
||||
"""Create the training status section"""
|
||||
if training_status.get('error'):
|
||||
], className="border rounded p-2 mb-2")
|
||||
|
||||
def _create_training_status_section(self, status: Dict[str, Any]) -> html.Div:
|
||||
if not status or status.get("status") == "error":
|
||||
return html.Div([
|
||||
html.Hr(),
|
||||
html.H6([
|
||||
html.I(className="fas fa-exclamation-triangle me-2 text-danger"),
|
||||
"Training Status Error"
|
||||
], className="mb-2"),
|
||||
html.P(f"Error: {training_status['error']}", className="text-danger small")
|
||||
html.H6([html.I(className="fas fa-exclamation-triangle me-2 text-danger"), "Training Status Error"], className="mb-2"),
|
||||
html.P(f"Error: {status.get('error', 'Unknown')}", className="text-danger small")
|
||||
])
|
||||
|
||||
is_training = training_status.get('is_training', False)
|
||||
|
||||
is_enabled = status.get("training_enabled", False)
|
||||
return html.Div([
|
||||
html.Hr(),
|
||||
html.H6([
|
||||
html.I(className="fas fa-brain me-2 text-secondary"),
|
||||
"Training Status"
|
||||
], className="mb-2"),
|
||||
|
||||
html.H6([html.I(className="fas fa-brain me-2 text-secondary"), "Training Status"], className="mb-2"),
|
||||
html.Div([
|
||||
html.Span("Status: ", className="text-muted small"),
|
||||
html.Span("ACTIVE" if is_training else "INACTIVE",
|
||||
className=f"small fw-bold {'text-success' if is_training else 'text-warning'}"),
|
||||
html.Span(f" | Iteration: {training_status.get('training_iteration', 0):,}",
|
||||
className="text-info small ms-2")
|
||||
html.Span("Enabled: ", className="text-muted small"),
|
||||
html.Span("ON" if is_enabled else "OFF", className=f"small fw-bold {'text-success' if is_enabled else 'text-warning'}"),
|
||||
], className="mb-1"),
|
||||
|
||||
html.Div([
|
||||
html.Span("Buffer: ", className="text-muted small"),
|
||||
html.Span(f"{training_status.get('experience_buffer_size', 0):,}",
|
||||
className="text-success small"),
|
||||
html.Span(" | Updated: ", className="text-muted small"),
|
||||
html.Span(f"{training_status.get('last_update', 'N/A')}",
|
||||
className="text-muted small")
|
||||
], className="mb-0")
|
||||
])
|
||||
|
||||
def _create_performance_section(self, performance_metrics: Dict[str, Any]) -> html.Div:
|
||||
"""Create the performance metrics section"""
|
||||
if performance_metrics.get('error'):
|
||||
return html.Div([
|
||||
html.Hr(),
|
||||
html.P(f"Performance metrics error: {performance_metrics['error']}",
|
||||
className="text-danger small")
|
||||
])
|
||||
|
||||
|
||||
def _create_system_metrics_section(self, metrics: Dict[str, Any]) -> html.Div:
|
||||
return html.Div([
|
||||
html.Hr(),
|
||||
html.H6([
|
||||
html.I(className="fas fa-chart-line me-2 text-primary"),
|
||||
"System Performance"
|
||||
], className="mb-2"),
|
||||
|
||||
html.H6([html.I(className="fas fa-chart-line me-2 text-primary"), "System Performance"], className="mb-2"),
|
||||
html.Div([
|
||||
html.Span("Decision Fusion: ", className="text-muted small"),
|
||||
html.Span("ON" if performance_metrics.get('decision_fusion_active') else "OFF",
|
||||
className=f"small {'text-success' if performance_metrics.get('decision_fusion_active') else 'text-muted'}"),
|
||||
html.Span("ON" if metrics.get("decision_fusion_active") else "OFF", className=f"small {'text-success' if metrics.get('decision_fusion_active') else 'text-muted'}"),
|
||||
html.Span(" | COB: ", className="text-muted small"),
|
||||
html.Span("ON" if performance_metrics.get('cob_integration_active') else "OFF",
|
||||
className=f"small {'text-success' if performance_metrics.get('cob_integration_active') else 'text-muted'}")
|
||||
html.Span("ON" if metrics.get("cob_integration_active") else "OFF", className=f"small {'text-success' if metrics.get('cob_integration_active') else 'text-muted'}"),
|
||||
], className="mb-1"),
|
||||
|
||||
html.Div([
|
||||
html.Span("Tracking: ", className="text-muted small"),
|
||||
html.Span(f"{performance_metrics.get('symbols_tracking', 0)} symbols",
|
||||
className="text-info small"),
|
||||
html.Span(" | Decisions: ", className="text-muted small"),
|
||||
html.Span(f"{performance_metrics.get('recent_decisions', 0):,}",
|
||||
className="text-primary small")
|
||||
], className="mb-0")
|
||||
])
|
||||
|
||||
def _create_signal_stats_display(self, signal_stats: Dict[str, Any]) -> List[html.Div]:
|
||||
"""Create display elements for signal generation statistics"""
|
||||
if not signal_stats or not any(signal_stats.values()):
|
||||
return []
|
||||
|
||||
buy_signals = signal_stats.get('buy_signals', 0)
|
||||
sell_signals = signal_stats.get('sell_signals', 0)
|
||||
hold_signals = signal_stats.get('hold_signals', 0)
|
||||
total_signals = signal_stats.get('total_signals', 0)
|
||||
|
||||
if total_signals == 0:
|
||||
return []
|
||||
|
||||
# Calculate percentages - ensure all values are numeric
|
||||
buy_signals = buy_signals or 0
|
||||
sell_signals = sell_signals or 0
|
||||
hold_signals = hold_signals or 0
|
||||
total_signals = total_signals or 0
|
||||
|
||||
buy_pct = (buy_signals / total_signals * 100) if total_signals > 0 else 0
|
||||
sell_pct = (sell_signals / total_signals * 100) if total_signals > 0 else 0
|
||||
hold_pct = (hold_signals / total_signals * 100) if total_signals > 0 else 0
|
||||
|
||||
return [
|
||||
html.Div([
|
||||
html.Span("Signals: ", className="text-muted small"),
|
||||
html.Span(f"B:{buy_signals}({buy_pct:.0f}%)", className="text-success small"),
|
||||
html.Span(" | ", className="text-muted small"),
|
||||
html.Span(f"S:{sell_signals}({sell_pct:.0f}%)", className="text-danger small"),
|
||||
html.Span(" | ", className="text-muted small"),
|
||||
html.Span(f"H:{hold_signals}({hold_pct:.0f}%)", className="text-warning small")
|
||||
], className="mb-1"),
|
||||
|
||||
html.Div([
|
||||
html.Span("Total: ", className="text-muted small"),
|
||||
html.Span(f"{total_signals:,}", className="text-primary small fw-bold"),
|
||||
*([
|
||||
html.Span(" | Accuracy: ", className="text-muted small"),
|
||||
html.Span(f"{signal_stats.get('accuracy', 0):.1f}%",
|
||||
className=f"small fw-bold {'text-success' if signal_stats.get('accuracy', 0) > 60 else 'text-warning' if signal_stats.get('accuracy', 0) > 40 else 'text-danger'}")
|
||||
] if signal_stats.get('accuracy', 0) > 0 else [])
|
||||
], className="mb-1")
|
||||
]
|
||||
|
||||
def _create_performance_metrics_display(self, model_data: Dict[str, Any]) -> List[html.Div]:
|
||||
"""Create display elements for performance metrics"""
|
||||
elements = []
|
||||
|
||||
# Win rate and accuracy
|
||||
signal_stats = model_data.get('signal_stats', {})
|
||||
loss_metrics = model_data.get('loss_metrics', {})
|
||||
|
||||
# Safely get numeric values
|
||||
win_rate = signal_stats.get('win_rate', 0) or 0
|
||||
accuracy = signal_stats.get('accuracy', 0) or 0
|
||||
|
||||
if win_rate > 0 or accuracy > 0:
|
||||
|
||||
elements.append(html.Div([
|
||||
html.Span("Performance: ", className="text-muted small"),
|
||||
*([
|
||||
html.Span(f"Win: {win_rate:.1f}%",
|
||||
className=f"small fw-bold {'text-success' if win_rate > 55 else 'text-warning' if win_rate > 45 else 'text-danger'}"),
|
||||
html.Span(" | ", className="text-muted small")
|
||||
] if win_rate > 0 else []),
|
||||
*([
|
||||
html.Span(f"Acc: {accuracy:.1f}%",
|
||||
className=f"small fw-bold {'text-success' if accuracy > 60 else 'text-warning' if accuracy > 40 else 'text-danger'}")
|
||||
] if accuracy > 0 else [])
|
||||
], className="mb-1"))
|
||||
|
||||
# Loss improvement
|
||||
if loss_metrics.get('improvement', 0) != 0:
|
||||
improvement = loss_metrics.get('improvement', 0)
|
||||
elements.append(html.Div([
|
||||
html.Span("Improvement: ", className="text-muted small"),
|
||||
html.Span(f"{improvement:+.1f}%",
|
||||
className=f"small fw-bold {'text-success' if improvement > 0 else 'text-danger'}")
|
||||
], className="mb-1"))
|
||||
|
||||
return elements
|
||||
html.Span(f"{metrics.get('symbols_tracking', 0)} symbols", className="text-info small"),
|
||||
], className="mb-0"),
|
||||
])
|
Reference in New Issue
Block a user