fixed CNN training
This commit is contained in:
@ -1367,71 +1367,73 @@ class CleanTradingDashboard:
|
||||
# Original training metrics callback - temporarily disabled for testing
|
||||
# @self.app.callback(
|
||||
# Output('training-metrics', 'children'),
|
||||
# [Input('slow-interval-component', 'n_intervals'),
|
||||
# Input('fast-interval-component', 'n_intervals'), # Add fast interval for testing
|
||||
# Input('refresh-training-metrics-btn', 'n_clicks')] # Add manual refresh button
|
||||
# )
|
||||
# def update_training_metrics(slow_intervals, fast_intervals, n_clicks):
|
||||
# """Update training metrics"""
|
||||
# logger.info(f"update_training_metrics callback triggered with slow_intervals={slow_intervals}, fast_intervals={fast_intervals}, n_clicks={n_clicks}")
|
||||
# try:
|
||||
# # Get toggle states from orchestrator
|
||||
# toggle_states = {}
|
||||
# if self.orchestrator:
|
||||
# # Get all available models dynamically
|
||||
# available_models = self._get_available_models()
|
||||
# logger.info(f"Available models: {list(available_models.keys())}")
|
||||
# for model_name in available_models.keys():
|
||||
# toggle_states[model_name] = self.orchestrator.get_model_toggle_state(model_name)
|
||||
# else:
|
||||
# # Fallback to dashboard dynamic state
|
||||
# toggle_states = {}
|
||||
# for model_name, state in self.model_toggle_states.items():
|
||||
# toggle_states[model_name] = state
|
||||
# # Now using slow-interval-component (10s) - no batching needed
|
||||
#
|
||||
# logger.info(f"Getting training metrics with toggle_states: {toggle_states}")
|
||||
# metrics_data = self._get_training_metrics(toggle_states)
|
||||
# logger.info(f"update_training_metrics callback: got metrics_data type={type(metrics_data)}")
|
||||
# if metrics_data and isinstance(metrics_data, dict):
|
||||
# logger.info(f"Metrics data keys: {list(metrics_data.keys())}")
|
||||
# if 'loaded_models' in metrics_data:
|
||||
# logger.info(f"Loaded models count: {len(metrics_data['loaded_models'])}")
|
||||
# logger.info(f"Loaded model names: {list(metrics_data['loaded_models'].keys())}")
|
||||
# else:
|
||||
# logger.warning("No 'loaded_models' key in metrics_data!")
|
||||
# else:
|
||||
# logger.warning(f"Invalid metrics_data: {metrics_data}")
|
||||
#
|
||||
# logger.info("Formatting training metrics...")
|
||||
# formatted_metrics = self.component_manager.format_training_metrics(metrics_data)
|
||||
# logger.info(f"Formatted metrics type: {type(formatted_metrics)}, length: {len(formatted_metrics) if isinstance(formatted_metrics, list) else 'N/A'}")
|
||||
# return formatted_metrics
|
||||
# except PreventUpdate:
|
||||
# logger.info("PreventUpdate raised in training metrics callback")
|
||||
# raise
|
||||
# except Exception as e:
|
||||
# logger.error(f"Error updating training metrics: {e}")
|
||||
# import traceback
|
||||
# logger.error(f"Traceback: {traceback.format_exc()}")
|
||||
# return [html.P(f"Error: {str(e)}", className="text-danger")]
|
||||
|
||||
# Test callback for training metrics
|
||||
@self.app.callback(
|
||||
Output('training-metrics', 'children'),
|
||||
[Input('refresh-training-metrics-btn', 'n_clicks')],
|
||||
prevent_initial_call=False
|
||||
[Input('slow-interval-component', 'n_intervals'),
|
||||
Input('fast-interval-component', 'n_intervals'), # Add fast interval for testing
|
||||
Input('refresh-training-metrics-btn', 'n_clicks')] # Add manual refresh button
|
||||
)
|
||||
def test_training_metrics_callback(n_clicks):
|
||||
"""Test callback for training metrics"""
|
||||
logger.info(f"test_training_metrics_callback triggered with n_clicks={n_clicks}")
|
||||
def update_training_metrics(slow_intervals, fast_intervals, n_clicks):
|
||||
"""Update training metrics"""
|
||||
logger.info(f"update_training_metrics callback triggered with slow_intervals={slow_intervals}, fast_intervals={fast_intervals}, n_clicks={n_clicks}")
|
||||
try:
|
||||
# Return a simple test message
|
||||
return [html.P("Training metrics test - callback is working!", className="text-success")]
|
||||
# Get toggle states from orchestrator
|
||||
toggle_states = {}
|
||||
if self.orchestrator:
|
||||
# Get all available models dynamically
|
||||
available_models = self._get_available_models()
|
||||
logger.info(f"Available models: {list(available_models.keys())}")
|
||||
for model_name in available_models.keys():
|
||||
toggle_states[model_name] = self.orchestrator.get_model_toggle_state(model_name)
|
||||
else:
|
||||
# Fallback to dashboard dynamic state
|
||||
toggle_states = {}
|
||||
for model_name, state in self.model_toggle_states.items():
|
||||
toggle_states[model_name] = state
|
||||
# Now using slow-interval-component (10s) - no batching needed
|
||||
|
||||
logger.info(f"Getting training metrics with toggle_states: {toggle_states}")
|
||||
metrics_data = self._get_training_metrics(toggle_states)
|
||||
logger.info(f"update_training_metrics callback: got metrics_data type={type(metrics_data)}")
|
||||
if metrics_data and isinstance(metrics_data, dict):
|
||||
logger.info(f"Metrics data keys: {list(metrics_data.keys())}")
|
||||
if 'loaded_models' in metrics_data:
|
||||
logger.info(f"Loaded models count: {len(metrics_data['loaded_models'])}")
|
||||
logger.info(f"Loaded model names: {list(metrics_data['loaded_models'].keys())}")
|
||||
else:
|
||||
logger.warning("No 'loaded_models' key in metrics_data!")
|
||||
else:
|
||||
logger.warning(f"Invalid metrics_data: {metrics_data}")
|
||||
|
||||
logger.info("Formatting training metrics...")
|
||||
formatted_metrics = self.component_manager.format_training_metrics(metrics_data)
|
||||
logger.info(f"Formatted metrics type: {type(formatted_metrics)}, length: {len(formatted_metrics) if isinstance(formatted_metrics, list) else 'N/A'}")
|
||||
return formatted_metrics
|
||||
except PreventUpdate:
|
||||
logger.info("PreventUpdate raised in training metrics callback")
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error in test callback: {e}")
|
||||
logger.error(f"Error updating training metrics: {e}")
|
||||
import traceback
|
||||
logger.error(f"Traceback: {traceback.format_exc()}")
|
||||
return [html.P(f"Error: {str(e)}", className="text-danger")]
|
||||
|
||||
# Test callback for training metrics (commented out - using real callback now)
|
||||
# @self.app.callback(
|
||||
# Output('training-metrics', 'children'),
|
||||
# [Input('refresh-training-metrics-btn', 'n_clicks')],
|
||||
# prevent_initial_call=False
|
||||
# )
|
||||
# def test_training_metrics_callback(n_clicks):
|
||||
# """Test callback for training metrics"""
|
||||
# logger.info(f"test_training_metrics_callback triggered with n_clicks={n_clicks}")
|
||||
# try:
|
||||
# # Return a simple test message
|
||||
# return [html.P("Training metrics test - callback is working!", className="text-success")]
|
||||
# except Exception as e:
|
||||
# logger.error(f"Error in test callback: {e}")
|
||||
# return [html.P(f"Error: {str(e)}", className="text-danger")]
|
||||
|
||||
# Manual trading buttons
|
||||
@self.app.callback(
|
||||
Output('manual-buy-btn', 'children'),
|
||||
|
Reference in New Issue
Block a user