fix merge

This commit is contained in:
Dobromir Popov
2025-10-02 23:50:08 +03:00
parent 8654e08028
commit a468c75c47
13 changed files with 150 additions and 14309 deletions

View File

@@ -21,15 +21,6 @@ Key Features:
import asyncio
import logging
import numpy as np
<<<<<<< HEAD
from core.reward_calculator import RewardCalculator
=======
import pandas as pd
import torch
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Callable
from dataclasses import dataclass
>>>>>>> d49a473ed6f4aef55bfdd47d6370e53582be6b7b
import threading
import time
from collections import deque
@@ -186,48 +177,6 @@ class TrainingIntegration:
collection_time = time.time() - start_time
self._update_collection_stats(collection_time)
<<<<<<< HEAD
# Get the model's device to ensure tensors are on the same device
model_device = next(cnn_model.parameters()).device
# Create tensors
features_tensor = torch.FloatTensor(features).unsqueeze(0).to(model_device)
target_tensor = torch.LongTensor([target]).to(model_device)
# Training step
cnn_model.train()
cnn_model.optimizer.zero_grad()
outputs = cnn_model(features_tensor)
# Handle different output formats
if isinstance(outputs, dict):
if 'main_output' in outputs:
logits = outputs['main_output']
elif 'action_logits' in outputs:
logits = outputs['action_logits']
else:
logits = list(outputs.values())[0]
else:
logits = outputs
# Calculate loss with reward weighting
loss_fn = torch.nn.CrossEntropyLoss()
loss = loss_fn(logits, target_tensor)
# Weight loss by reward magnitude
weighted_loss = loss * abs(reward)
# Backward pass
weighted_loss.backward()
cnn_model.optimizer.step()
logger.info(f"CNN trained on trade outcome: P&L=${pnl:.2f}, loss={loss.item():.4f}")
return True
=======
# Wait for next collection cycle
time.sleep(self.config.collection_interval)
>>>>>>> d49a473ed6f4aef55bfdd47d6370e53582be6b7b
except Exception as e:
logger.error(f"Error in data collection worker: {e}")