fix netwrk rebuild

This commit is contained in:
Dobromir Popov
2025-07-25 23:59:51 +03:00
parent 43ed694917
commit a3828c708c
3 changed files with 264 additions and 35 deletions

View File

@ -108,43 +108,83 @@ class BaseDataInput:
Convert BaseDataInput to standardized feature vector for models
Returns:
np.ndarray: Standardized feature vector combining all data sources
np.ndarray: FIXED SIZE standardized feature vector (7850 features)
"""
# FIXED FEATURE SIZE - this should NEVER change at runtime
FIXED_FEATURE_SIZE = 7850
features = []
# OHLCV features for ETH (300 frames x 4 timeframes x 5 features = 6000 features)
for ohlcv_list in [self.ohlcv_1s, self.ohlcv_1m, self.ohlcv_1h, self.ohlcv_1d]:
for bar in ohlcv_list[-300:]: # Ensure exactly 300 frames
# Ensure exactly 300 frames by padding or truncating
ohlcv_frames = ohlcv_list[-300:] if len(ohlcv_list) >= 300 else ohlcv_list
# Pad with zeros if not enough data
while len(ohlcv_frames) < 300:
# Create a dummy OHLCV bar with zeros
dummy_bar = OHLCVBar(
symbol="ETH/USDT",
timestamp=datetime.now(),
open=0.0, high=0.0, low=0.0, close=0.0, volume=0.0,
timeframe="1s"
)
ohlcv_frames.insert(0, dummy_bar)
# Extract features from exactly 300 frames
for bar in ohlcv_frames:
features.extend([bar.open, bar.high, bar.low, bar.close, bar.volume])
# BTC OHLCV features (300 frames x 5 features = 1500 features)
for bar in self.btc_ohlcv_1s[-300:]: # Ensure exactly 300 frames
btc_frames = self.btc_ohlcv_1s[-300:] if len(self.btc_ohlcv_1s) >= 300 else self.btc_ohlcv_1s
# Pad BTC data if needed
while len(btc_frames) < 300:
dummy_bar = OHLCVBar(
symbol="BTC/USDT",
timestamp=datetime.now(),
open=0.0, high=0.0, low=0.0, close=0.0, volume=0.0,
timeframe="1s"
)
btc_frames.insert(0, dummy_bar)
for bar in btc_frames:
features.extend([bar.open, bar.high, bar.low, bar.close, bar.volume])
# COB features (±20 buckets x multiple metrics ≈ 800 features)
# COB features (FIXED SIZE: 200 features)
cob_features = []
if self.cob_data:
# Price bucket features
for price in sorted(self.cob_data.price_buckets.keys()):
# Price bucket features (up to 40 buckets x 4 metrics = 160 features)
price_keys = sorted(self.cob_data.price_buckets.keys())[:40] # Max 40 buckets
for price in price_keys:
bucket_data = self.cob_data.price_buckets[price]
features.extend([
cob_features.extend([
bucket_data.get('bid_volume', 0.0),
bucket_data.get('ask_volume', 0.0),
bucket_data.get('total_volume', 0.0),
bucket_data.get('imbalance', 0.0)
])
# Moving averages of imbalance for ±5 buckets (5 buckets x 4 MAs x 2 sides = 40 features)
for ma_dict in [self.cob_data.ma_1s_imbalance, self.cob_data.ma_5s_imbalance,
self.cob_data.ma_15s_imbalance, self.cob_data.ma_60s_imbalance]:
for price in sorted(list(ma_dict.keys())[:5]): # ±5 buckets
features.append(ma_dict[price])
# Moving averages (up to 10 features)
ma_features = []
for ma_dict in [self.cob_data.ma_1s_imbalance, self.cob_data.ma_5s_imbalance]:
for price in sorted(list(ma_dict.keys())[:5]): # Max 5 buckets per MA
ma_features.append(ma_dict[price])
if len(ma_features) >= 10:
break
if len(ma_features) >= 10:
break
cob_features.extend(ma_features)
# Technical indicators (variable, pad to 100 features)
# Pad COB features to exactly 200
cob_features.extend([0.0] * (200 - len(cob_features)))
features.extend(cob_features[:200]) # Ensure exactly 200 COB features
# Technical indicators (FIXED SIZE: 100 features)
indicator_values = list(self.technical_indicators.values())
features.extend(indicator_values[:100]) # Take first 100 indicators
features.extend([0.0] * max(0, 100 - len(indicator_values))) # Pad if needed
features.extend([0.0] * max(0, 100 - len(indicator_values))) # Pad to exactly 100
# Last predictions from other models (variable, pad to 50 features)
# Last predictions from other models (FIXED SIZE: 50 features)
prediction_features = []
for model_output in self.last_predictions.values():
prediction_features.extend([
@ -155,7 +195,15 @@ class BaseDataInput:
model_output.predictions.get('expected_reward', 0.0)
])
features.extend(prediction_features[:50]) # Take first 50 prediction features
features.extend([0.0] * max(0, 50 - len(prediction_features))) # Pad if needed
features.extend([0.0] * max(0, 50 - len(prediction_features))) # Pad to exactly 50
# CRITICAL: Ensure EXACTLY the fixed feature size
if len(features) > FIXED_FEATURE_SIZE:
features = features[:FIXED_FEATURE_SIZE] # Truncate if too long
elif len(features) < FIXED_FEATURE_SIZE:
features.extend([0.0] * (FIXED_FEATURE_SIZE - len(features))) # Pad if too short
assert len(features) == FIXED_FEATURE_SIZE, f"Feature vector size mismatch: {len(features)} != {FIXED_FEATURE_SIZE}"
return np.array(features, dtype=np.float32)