dash working
This commit is contained in:
@ -22,7 +22,8 @@
|
||||
- Ensure thread safety for cache access
|
||||
- _Requirements: 1.6, 8.1_
|
||||
|
||||
- [ ] 1.3. Enhance real-time data streaming
|
||||
- [-] 1.3. Enhance real-time data streaming
|
||||
|
||||
- Improve WebSocket connection management
|
||||
- Implement reconnection strategies
|
||||
- Add data validation to ensure data integrity
|
||||
|
@ -2653,6 +2653,7 @@ class DataProvider:
|
||||
# Significantly reduced frequency for REST API fallback only
|
||||
def collect_symbol_data(symbol):
|
||||
rest_api_fallback_count = 0
|
||||
last_rest_api_call = 0 # Track last REST API call time
|
||||
while self.cob_collection_active:
|
||||
try:
|
||||
# PRIORITY 1: Try to use WebSocket data first
|
||||
@ -2664,13 +2665,20 @@ class DataProvider:
|
||||
# Much longer sleep since WebSocket provides real-time data
|
||||
time.sleep(10.0) # Only check every 10 seconds when WS is working
|
||||
else:
|
||||
# FALLBACK: Only use REST API if WebSocket fails
|
||||
# FALLBACK: Only use REST API if WebSocket fails AND rate limit allows
|
||||
rest_api_fallback_count += 1
|
||||
current_time = time.time()
|
||||
|
||||
# STRICT RATE LIMITING: Maximum 1 REST API call per second
|
||||
if current_time - last_rest_api_call >= 1.0: # At least 1 second between calls
|
||||
if rest_api_fallback_count <= 3: # Limited fallback attempts
|
||||
logger.warning(f"WebSocket COB data unavailable for {symbol}, using REST API fallback #{rest_api_fallback_count}")
|
||||
self._collect_cob_data_for_symbol(symbol)
|
||||
last_rest_api_call = current_time # Update last call time
|
||||
else:
|
||||
logger.debug(f"Skipping REST API for {symbol} to prevent rate limits (WS data preferred)")
|
||||
else:
|
||||
logger.debug(f"Rate limiting REST API for {symbol} - waiting {1.0 - (current_time - last_rest_api_call):.1f}s")
|
||||
|
||||
# Much longer sleep when using REST API fallback
|
||||
time.sleep(30.0) # 30 seconds between REST calls
|
||||
@ -2694,49 +2702,35 @@ class DataProvider:
|
||||
for thread in threads:
|
||||
thread.join(timeout=1)
|
||||
|
||||
def _get_websocket_cob_data(self, symbol: str) -> Optional[dict]:
|
||||
"""Get COB data from WebSocket streams (rate limit free)"""
|
||||
def _get_websocket_cob_data(self, symbol: str) -> Optional[Dict]:
|
||||
"""Get COB data from WebSocket streams (primary source)"""
|
||||
try:
|
||||
binance_symbol = symbol.replace('/', '').upper()
|
||||
# Check if we have WebSocket COB data available
|
||||
if hasattr(self, 'cob_data_cache') and symbol in self.cob_data_cache:
|
||||
cached_data = self.cob_data_cache[symbol]
|
||||
if cached_data and isinstance(cached_data, dict):
|
||||
# Check if data is recent (within last 5 seconds)
|
||||
import time
|
||||
current_time = time.time()
|
||||
data_age = current_time - cached_data.get('timestamp', 0)
|
||||
|
||||
# Check if we have recent WebSocket tick data
|
||||
if binance_symbol in self.tick_buffers and len(self.tick_buffers[binance_symbol]) > 10:
|
||||
recent_ticks = list(self.tick_buffers[binance_symbol])[-50:] # Last 50 ticks
|
||||
if data_age < 5.0: # Data is fresh
|
||||
logger.debug(f"Using WebSocket COB data for {symbol} (age: {data_age:.1f}s)")
|
||||
return cached_data
|
||||
else:
|
||||
logger.debug(f"WebSocket COB data for {symbol} is stale (age: {data_age:.1f}s)")
|
||||
|
||||
if recent_ticks:
|
||||
# Calculate COB data from WebSocket ticks
|
||||
latest_tick = recent_ticks[-1]
|
||||
|
||||
# Calculate bid/ask liquidity from recent tick patterns
|
||||
buy_volume = sum(tick.volume for tick in recent_ticks if tick.side == 'buy')
|
||||
sell_volume = sum(tick.volume for tick in recent_ticks if tick.side == 'sell')
|
||||
total_volume = buy_volume + sell_volume
|
||||
|
||||
# Calculate metrics
|
||||
imbalance = (buy_volume - sell_volume) / total_volume if total_volume > 0 else 0
|
||||
avg_price = sum(tick.price for tick in recent_ticks) / len(recent_ticks)
|
||||
|
||||
# Create synthetic COB snapshot from WebSocket data
|
||||
cob_snapshot = {
|
||||
'symbol': symbol,
|
||||
'timestamp': datetime.now(),
|
||||
'source': 'websocket', # Mark as WebSocket source
|
||||
'stats': {
|
||||
'mid_price': latest_tick.price,
|
||||
'avg_price': avg_price,
|
||||
'imbalance': imbalance,
|
||||
'buy_volume': buy_volume,
|
||||
'sell_volume': sell_volume,
|
||||
'total_volume': total_volume,
|
||||
'tick_count': len(recent_ticks),
|
||||
'best_bid': latest_tick.price - 0.01, # Approximate
|
||||
'best_ask': latest_tick.price + 0.01, # Approximate
|
||||
'spread_bps': 10 # Approximate spread
|
||||
}
|
||||
}
|
||||
|
||||
return cob_snapshot
|
||||
# Check if multi-exchange COB provider has WebSocket data
|
||||
if hasattr(self, 'multi_exchange_cob_provider') and self.multi_exchange_cob_provider:
|
||||
try:
|
||||
cob_data = self.multi_exchange_cob_provider.get_latest_cob_data(symbol)
|
||||
if cob_data and isinstance(cob_data, dict):
|
||||
logger.debug(f"Using multi-exchange WebSocket COB data for {symbol}")
|
||||
return cob_data
|
||||
except Exception as e:
|
||||
logger.debug(f"Error getting multi-exchange COB data for {symbol}: {e}")
|
||||
|
||||
logger.debug(f"No WebSocket COB data available for {symbol}")
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
|
@ -159,186 +159,39 @@ class MultiExchangeCOBProvider:
|
||||
to create a consolidated view of market liquidity and pricing.
|
||||
"""
|
||||
|
||||
def __init__(self, symbols: Optional[List[str]] = None, bucket_size_bps: float = 1.0):
|
||||
"""
|
||||
Initialize Multi-Exchange COB Provider
|
||||
|
||||
Args:
|
||||
symbols: List of symbols to monitor (e.g., ['BTC/USDT', 'ETH/USDT'])
|
||||
bucket_size_bps: Price bucket size in basis points for fine-grain analysis
|
||||
"""
|
||||
self.symbols = symbols or ['BTC/USDT', 'ETH/USDT']
|
||||
self.bucket_size_bps = bucket_size_bps
|
||||
self.bucket_update_frequency = 100 # ms
|
||||
self.consolidation_frequency = 100 # ms
|
||||
|
||||
# REST API configuration for deep order book - REDUCED to prevent 418 errors
|
||||
self.rest_api_frequency = 5000 # ms - full snapshot every 5 seconds (reduced from 1s)
|
||||
self.rest_depth_limit = 100 # Reduced from 500 to 100 levels to reduce load
|
||||
|
||||
# Exchange configurations
|
||||
self.exchange_configs = self._initialize_exchange_configs()
|
||||
|
||||
# Rate limiter for REST API calls
|
||||
self.rest_rate_limiter = SimpleRateLimiter(requests_per_second=2.0) # Very conservative
|
||||
|
||||
# Order book storage - now with deep and live separation
|
||||
self.exchange_order_books = {
|
||||
symbol: {
|
||||
exchange.value: {
|
||||
'bids': {},
|
||||
'asks': {},
|
||||
'timestamp': None,
|
||||
'connected': False,
|
||||
'deep_bids': {}, # Full depth from REST API
|
||||
'deep_asks': {}, # Full depth from REST API
|
||||
'deep_timestamp': None,
|
||||
'last_update_id': None # For managing diff updates
|
||||
}
|
||||
for exchange in ExchangeType
|
||||
}
|
||||
for symbol in self.symbols
|
||||
}
|
||||
|
||||
# Consolidated order books
|
||||
self.consolidated_order_books: Dict[str, COBSnapshot] = {}
|
||||
|
||||
# Real-time statistics tracking
|
||||
self.realtime_stats: Dict[str, Dict] = {symbol: {} for symbol in self.symbols}
|
||||
self.realtime_snapshots: Dict[str, deque] = {
|
||||
symbol: deque(maxlen=1000) for symbol in self.symbols
|
||||
}
|
||||
|
||||
# Session tracking for SVP
|
||||
self.session_start_time = datetime.now()
|
||||
self.session_trades: Dict[str, List[Dict]] = {symbol: [] for symbol in self.symbols}
|
||||
self.svp_cache: Dict[str, Dict] = {symbol: {} for symbol in self.symbols}
|
||||
|
||||
# Fixed USD bucket sizes for different symbols as requested
|
||||
self.fixed_usd_buckets = {
|
||||
'BTC/USDT': 10.0, # $10 buckets for BTC
|
||||
'ETH/USDT': 1.0, # $1 buckets for ETH
|
||||
}
|
||||
|
||||
# WebSocket management
|
||||
def __init__(self, symbols: List[str], exchange_configs: Dict[str, ExchangeConfig]):
|
||||
"""Initialize multi-exchange COB provider"""
|
||||
self.symbols = symbols
|
||||
self.exchange_configs = exchange_configs
|
||||
self.active_exchanges = ['binance'] # Focus on Binance for now
|
||||
self.is_streaming = False
|
||||
self.active_exchanges = ['binance'] # Start with Binance only
|
||||
self.cob_data_cache = {} # Cache for COB data
|
||||
self.cob_subscribers = [] # List of callback functions
|
||||
|
||||
# Callbacks for real-time updates
|
||||
self.cob_update_callbacks = []
|
||||
self.bucket_update_callbacks = []
|
||||
# Rate limiting for REST API fallback
|
||||
self.last_rest_api_call = 0
|
||||
self.rest_api_call_count = 0
|
||||
|
||||
# Performance tracking
|
||||
self.exchange_update_counts = {exchange.value: 0 for exchange in ExchangeType}
|
||||
self.consolidation_stats = {
|
||||
symbol: {
|
||||
'total_updates': 0,
|
||||
'avg_consolidation_time_ms': 0,
|
||||
'total_liquidity_usd': 0,
|
||||
'last_update': None
|
||||
}
|
||||
for symbol in self.symbols
|
||||
}
|
||||
self.processing_times = {'consolidation': deque(maxlen=100), 'rest_api': deque(maxlen=100)}
|
||||
logger.info(f"Multi-exchange COB provider initialized for symbols: {symbols}")
|
||||
|
||||
# Thread safety
|
||||
self.data_lock = asyncio.Lock()
|
||||
def subscribe_to_cob_updates(self, callback):
|
||||
"""Subscribe to COB data updates"""
|
||||
self.cob_subscribers.append(callback)
|
||||
logger.debug(f"Added COB subscriber, total: {len(self.cob_subscribers)}")
|
||||
|
||||
# Initialize aiohttp session and connector to None, will be set up in start_streaming
|
||||
self.session: Optional[aiohttp.ClientSession] = None
|
||||
self.connector: Optional[aiohttp.TCPConnector] = None
|
||||
self.rest_session: Optional[aiohttp.ClientSession] = None # Added for explicit None initialization
|
||||
|
||||
# Create REST API session
|
||||
# Fix for Windows aiodns issue - use ThreadedResolver instead
|
||||
connector = aiohttp.TCPConnector(
|
||||
resolver=aiohttp.ThreadedResolver(),
|
||||
use_dns_cache=False
|
||||
)
|
||||
self.rest_session = aiohttp.ClientSession(connector=connector)
|
||||
|
||||
# Initialize data structures
|
||||
for symbol in self.symbols:
|
||||
self.exchange_order_books[symbol]['binance']['connected'] = False
|
||||
self.exchange_order_books[symbol]['binance']['deep_bids'] = {}
|
||||
self.exchange_order_books[symbol]['binance']['deep_asks'] = {}
|
||||
self.exchange_order_books[symbol]['binance']['deep_timestamp'] = None
|
||||
self.exchange_order_books[symbol]['binance']['last_update_id'] = None
|
||||
self.realtime_snapshots[symbol].append(COBSnapshot(
|
||||
symbol=symbol,
|
||||
timestamp=datetime.now(),
|
||||
consolidated_bids=[],
|
||||
consolidated_asks=[],
|
||||
exchanges_active=[],
|
||||
volume_weighted_mid=0.0,
|
||||
total_bid_liquidity=0.0,
|
||||
total_ask_liquidity=0.0,
|
||||
spread_bps=0.0,
|
||||
liquidity_imbalance=0.0,
|
||||
price_buckets={}
|
||||
))
|
||||
|
||||
logger.info(f"Multi-Exchange COB Provider initialized")
|
||||
logger.info(f"Symbols: {self.symbols}")
|
||||
logger.info(f"Bucket size: {bucket_size_bps} bps")
|
||||
logger.info(f"Fixed USD buckets: {self.fixed_usd_buckets}")
|
||||
logger.info(f"Configured exchanges: {[e.value for e in ExchangeType]}")
|
||||
|
||||
def _initialize_exchange_configs(self) -> Dict[str, ExchangeConfig]:
|
||||
"""Initialize exchange configurations"""
|
||||
configs = {}
|
||||
|
||||
# Binance configuration
|
||||
configs[ExchangeType.BINANCE.value] = ExchangeConfig(
|
||||
exchange_type=ExchangeType.BINANCE,
|
||||
weight=0.3, # Higher weight due to volume
|
||||
websocket_url="wss://stream.binance.com:9443/ws/",
|
||||
rest_api_url="https://api.binance.com",
|
||||
symbols_mapping={'BTC/USDT': 'BTCUSDT', 'ETH/USDT': 'ETHUSDT'},
|
||||
rate_limits={'requests_per_minute': 1200, 'weight_per_minute': 6000}
|
||||
)
|
||||
|
||||
# Coinbase Pro configuration
|
||||
configs[ExchangeType.COINBASE.value] = ExchangeConfig(
|
||||
exchange_type=ExchangeType.COINBASE,
|
||||
weight=0.25,
|
||||
websocket_url="wss://ws-feed.exchange.coinbase.com",
|
||||
rest_api_url="https://api.exchange.coinbase.com",
|
||||
symbols_mapping={'BTC/USDT': 'BTC-USD', 'ETH/USDT': 'ETH-USD'},
|
||||
rate_limits={'requests_per_minute': 600}
|
||||
)
|
||||
|
||||
# Kraken configuration
|
||||
configs[ExchangeType.KRAKEN.value] = ExchangeConfig(
|
||||
exchange_type=ExchangeType.KRAKEN,
|
||||
weight=0.2,
|
||||
websocket_url="wss://ws.kraken.com",
|
||||
rest_api_url="https://api.kraken.com",
|
||||
symbols_mapping={'BTC/USDT': 'XBT/USDT', 'ETH/USDT': 'ETH/USDT'},
|
||||
rate_limits={'requests_per_minute': 900}
|
||||
)
|
||||
|
||||
# Huobi configuration
|
||||
configs[ExchangeType.HUOBI.value] = ExchangeConfig(
|
||||
exchange_type=ExchangeType.HUOBI,
|
||||
weight=0.15,
|
||||
websocket_url="wss://api.huobi.pro/ws",
|
||||
rest_api_url="https://api.huobi.pro",
|
||||
symbols_mapping={'BTC/USDT': 'btcusdt', 'ETH/USDT': 'ethusdt'},
|
||||
rate_limits={'requests_per_minute': 2000}
|
||||
)
|
||||
|
||||
# Bitfinex configuration
|
||||
configs[ExchangeType.BITFINEX.value] = ExchangeConfig(
|
||||
exchange_type=ExchangeType.BITFINEX,
|
||||
weight=0.1,
|
||||
websocket_url="wss://api-pub.bitfinex.com/ws/2",
|
||||
rest_api_url="https://api-pub.bitfinex.com",
|
||||
symbols_mapping={'BTC/USDT': 'tBTCUST', 'ETH/USDT': 'tETHUST'},
|
||||
rate_limits={'requests_per_minute': 1000}
|
||||
)
|
||||
|
||||
return configs
|
||||
async def _notify_cob_subscribers(self, symbol: str, cob_snapshot: Dict):
|
||||
"""Notify all subscribers of COB data updates"""
|
||||
try:
|
||||
for callback in self.cob_subscribers:
|
||||
try:
|
||||
if asyncio.iscoroutinefunction(callback):
|
||||
await callback(symbol, cob_snapshot)
|
||||
else:
|
||||
callback(symbol, cob_snapshot)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in COB subscriber callback: {e}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error notifying COB subscribers: {e}")
|
||||
|
||||
async def start_streaming(self):
|
||||
"""Start real-time order book streaming from all configured exchanges using only WebSocket"""
|
||||
@ -1667,23 +1520,97 @@ class MultiExchangeCOBProvider:
|
||||
async with websockets_connect(ws_url) as websocket:
|
||||
logger.info(f"Connected to Binance full depth stream for {symbol}")
|
||||
|
||||
async for message in websocket:
|
||||
if not self.is_streaming:
|
||||
break
|
||||
|
||||
while self.is_streaming:
|
||||
try:
|
||||
message = await websocket.recv()
|
||||
data = json.loads(message)
|
||||
await self._process_binance_full_depth(symbol, data)
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Error parsing Binance full depth message: {e}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing Binance full depth: {e}")
|
||||
# Process full depth data
|
||||
if 'bids' in data and 'asks' in data:
|
||||
# Create comprehensive COB snapshot
|
||||
cob_snapshot = {
|
||||
'symbol': symbol,
|
||||
'timestamp': time.time(),
|
||||
'source': 'binance_websocket_full_depth',
|
||||
'bids': data['bids'][:100], # Top 100 levels
|
||||
'asks': data['asks'][:100], # Top 100 levels
|
||||
'stats': self._calculate_cob_stats(data['bids'], data['asks']),
|
||||
'exchange': 'binance',
|
||||
'depth_levels': len(data['bids']) + len(data['asks'])
|
||||
}
|
||||
|
||||
# Store in cache
|
||||
self.cob_data_cache[symbol] = cob_snapshot
|
||||
|
||||
# Notify subscribers
|
||||
await self._notify_cob_subscribers(symbol, cob_snapshot)
|
||||
|
||||
logger.debug(f"Full depth COB update for {symbol}: {len(data['bids'])} bids, {len(data['asks'])} asks")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Binance full depth WebSocket error for {symbol}: {e}")
|
||||
finally:
|
||||
logger.info(f"Disconnected from Binance full depth stream for {symbol}")
|
||||
if "ConnectionClosed" in str(e) or "connection closed" in str(e).lower():
|
||||
logger.warning(f"Binance full depth WebSocket connection closed for {symbol}")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing full depth data for {symbol}: {e}")
|
||||
await asyncio.sleep(1)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in Binance full depth stream for {symbol}: {e}")
|
||||
|
||||
def _calculate_cob_stats(self, bids: List, asks: List) -> Dict:
|
||||
"""Calculate COB statistics from order book data"""
|
||||
try:
|
||||
if not bids or not asks:
|
||||
return {
|
||||
'mid_price': 0,
|
||||
'spread_bps': 0,
|
||||
'imbalance': 0,
|
||||
'bid_liquidity': 0,
|
||||
'ask_liquidity': 0
|
||||
}
|
||||
|
||||
# Convert string values to float
|
||||
bid_prices = [float(bid[0]) for bid in bids]
|
||||
bid_sizes = [float(bid[1]) for bid in bids]
|
||||
ask_prices = [float(ask[0]) for ask in asks]
|
||||
ask_sizes = [float(ask[1]) for ask in asks]
|
||||
|
||||
# Calculate best bid/ask
|
||||
best_bid = max(bid_prices)
|
||||
best_ask = min(ask_prices)
|
||||
mid_price = (best_bid + best_ask) / 2
|
||||
|
||||
# Calculate spread
|
||||
spread_bps = ((best_ask - best_bid) / mid_price) * 10000 if mid_price > 0 else 0
|
||||
|
||||
# Calculate liquidity
|
||||
bid_liquidity = sum(bid_sizes[:20]) # Top 20 levels
|
||||
ask_liquidity = sum(ask_sizes[:20]) # Top 20 levels
|
||||
total_liquidity = bid_liquidity + ask_liquidity
|
||||
|
||||
# Calculate imbalance
|
||||
imbalance = (bid_liquidity - ask_liquidity) / total_liquidity if total_liquidity > 0 else 0
|
||||
|
||||
return {
|
||||
'mid_price': mid_price,
|
||||
'spread_bps': spread_bps,
|
||||
'imbalance': imbalance,
|
||||
'bid_liquidity': bid_liquidity,
|
||||
'ask_liquidity': ask_liquidity,
|
||||
'best_bid': best_bid,
|
||||
'best_ask': best_ask
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error calculating COB stats: {e}")
|
||||
return {
|
||||
'mid_price': 0,
|
||||
'spread_bps': 0,
|
||||
'imbalance': 0,
|
||||
'bid_liquidity': 0,
|
||||
'ask_liquidity': 0
|
||||
}
|
||||
|
||||
async def _stream_binance_book_ticker(self, symbol: str):
|
||||
"""Stream best bid/ask prices from Binance WebSocket"""
|
||||
@ -1910,3 +1837,13 @@ class MultiExchangeCOBProvider:
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error adding aggregate trade to analysis for {symbol}: {e}")
|
||||
|
||||
def get_latest_cob_data(self, symbol: str) -> Optional[Dict]:
|
||||
"""Get latest COB data for a symbol from cache"""
|
||||
try:
|
||||
if symbol in self.cob_data_cache:
|
||||
return self.cob_data_cache[symbol]
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting latest COB data for {symbol}: {e}")
|
||||
return None
|
218
run_simple_dashboard.py
Normal file
218
run_simple_dashboard.py
Normal file
@ -0,0 +1,218 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Simple Dashboard Runner - Fixed version for testing
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import logging
|
||||
import time
|
||||
import threading
|
||||
from pathlib import Path
|
||||
|
||||
# Fix OpenMP library conflicts
|
||||
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
||||
os.environ['OMP_NUM_THREADS'] = '4'
|
||||
|
||||
# Fix matplotlib backend
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
|
||||
# Add project root to path
|
||||
project_root = Path(__file__).parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def create_simple_dashboard():
|
||||
"""Create a simple working dashboard"""
|
||||
try:
|
||||
import dash
|
||||
from dash import html, dcc, Input, Output
|
||||
import plotly.graph_objs as go
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
# Create Dash app
|
||||
app = dash.Dash(__name__)
|
||||
|
||||
# Simple layout
|
||||
app.layout = html.Div([
|
||||
html.H1("Trading System Dashboard", style={'textAlign': 'center', 'color': '#2c3e50'}),
|
||||
|
||||
html.Div([
|
||||
html.Div([
|
||||
html.H3("System Status", style={'color': '#27ae60'}),
|
||||
html.P(id='system-status', children="System: RUNNING", style={'fontSize': '18px'}),
|
||||
html.P(id='current-time', children=f"Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"),
|
||||
], style={'width': '48%', 'display': 'inline-block', 'padding': '20px'}),
|
||||
|
||||
html.Div([
|
||||
html.H3("Trading Stats", style={'color': '#3498db'}),
|
||||
html.P("Total Trades: 0"),
|
||||
html.P("Success Rate: 0%"),
|
||||
html.P("Current PnL: $0.00"),
|
||||
], style={'width': '48%', 'display': 'inline-block', 'padding': '20px'}),
|
||||
]),
|
||||
|
||||
html.Div([
|
||||
dcc.Graph(id='price-chart'),
|
||||
], style={'padding': '20px'}),
|
||||
|
||||
html.Div([
|
||||
dcc.Graph(id='performance-chart'),
|
||||
], style={'padding': '20px'}),
|
||||
|
||||
# Auto-refresh component
|
||||
dcc.Interval(
|
||||
id='interval-component',
|
||||
interval=5000, # Update every 5 seconds
|
||||
n_intervals=0
|
||||
)
|
||||
])
|
||||
|
||||
# Callback for updating time
|
||||
@app.callback(
|
||||
Output('current-time', 'children'),
|
||||
Input('interval-component', 'n_intervals')
|
||||
)
|
||||
def update_time(n):
|
||||
return f"Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
# Callback for price chart
|
||||
@app.callback(
|
||||
Output('price-chart', 'figure'),
|
||||
Input('interval-component', 'n_intervals')
|
||||
)
|
||||
def update_price_chart(n):
|
||||
# Generate sample data
|
||||
dates = pd.date_range(start=datetime.now() - timedelta(hours=24),
|
||||
end=datetime.now(), freq='1H')
|
||||
prices = 3000 + np.cumsum(np.random.randn(len(dates)) * 10)
|
||||
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(
|
||||
x=dates,
|
||||
y=prices,
|
||||
mode='lines',
|
||||
name='ETH/USDT',
|
||||
line=dict(color='#3498db', width=2)
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title='ETH/USDT Price Chart (24H)',
|
||||
xaxis_title='Time',
|
||||
yaxis_title='Price (USD)',
|
||||
template='plotly_white',
|
||||
height=400
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
# Callback for performance chart
|
||||
@app.callback(
|
||||
Output('performance-chart', 'figure'),
|
||||
Input('interval-component', 'n_intervals')
|
||||
)
|
||||
def update_performance_chart(n):
|
||||
# Generate sample performance data
|
||||
dates = pd.date_range(start=datetime.now() - timedelta(days=7),
|
||||
end=datetime.now(), freq='1D')
|
||||
performance = np.cumsum(np.random.randn(len(dates)) * 0.02) * 100
|
||||
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(
|
||||
x=dates,
|
||||
y=performance,
|
||||
mode='lines+markers',
|
||||
name='Portfolio Performance',
|
||||
line=dict(color='#27ae60', width=3),
|
||||
marker=dict(size=6)
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title='Portfolio Performance (7 Days)',
|
||||
xaxis_title='Date',
|
||||
yaxis_title='Performance (%)',
|
||||
template='plotly_white',
|
||||
height=400
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
return app
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating dashboard: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
return None
|
||||
|
||||
def test_data_provider():
|
||||
"""Test data provider in background"""
|
||||
try:
|
||||
from core.data_provider import DataProvider
|
||||
from core.api_rate_limiter import get_rate_limiter
|
||||
|
||||
logger.info("Testing data provider...")
|
||||
|
||||
# Create data provider
|
||||
data_provider = DataProvider(
|
||||
symbols=['ETH/USDT'],
|
||||
timeframes=['1m', '5m']
|
||||
)
|
||||
|
||||
# Test getting data
|
||||
df = data_provider.get_historical_data('ETH/USDT', '1m', limit=10)
|
||||
if df is not None and len(df) > 0:
|
||||
logger.info(f"✓ Data provider working: {len(df)} candles retrieved")
|
||||
else:
|
||||
logger.warning("⚠ Data provider returned no data (rate limiting)")
|
||||
|
||||
# Test rate limiter status
|
||||
rate_limiter = get_rate_limiter()
|
||||
status = rate_limiter.get_all_endpoint_status()
|
||||
logger.info(f"Rate limiter status: {status}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Data provider test error: {e}")
|
||||
|
||||
def main():
|
||||
"""Main function"""
|
||||
logger.info("=" * 60)
|
||||
logger.info("SIMPLE DASHBOARD RUNNER - TESTING SYSTEM")
|
||||
logger.info("=" * 60)
|
||||
|
||||
# Test data provider in background
|
||||
data_thread = threading.Thread(target=test_data_provider, daemon=True)
|
||||
data_thread.start()
|
||||
|
||||
# Create and run dashboard
|
||||
app = create_simple_dashboard()
|
||||
if app is None:
|
||||
logger.error("Failed to create dashboard")
|
||||
return
|
||||
|
||||
try:
|
||||
logger.info("Starting dashboard server...")
|
||||
logger.info("Dashboard URL: http://127.0.0.1:8050")
|
||||
logger.info("Press Ctrl+C to stop")
|
||||
|
||||
# Run the dashboard
|
||||
app.run(debug=False, host='127.0.0.1', port=8050, use_reloader=False)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("Dashboard stopped by user")
|
||||
except Exception as e:
|
||||
logger.error(f"Dashboard error: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -2311,7 +2311,9 @@ class CleanTradingDashboard:
|
||||
cob_data = self.data_provider.get_latest_cob_data(symbol)
|
||||
logger.debug(f"COB data type for {symbol}: {type(cob_data)}, data: {cob_data}")
|
||||
|
||||
if cob_data and isinstance(cob_data, dict) and 'stats' in cob_data:
|
||||
if cob_data and isinstance(cob_data, dict):
|
||||
# Validate COB data structure
|
||||
if 'stats' in cob_data and cob_data['stats']:
|
||||
logger.debug(f"COB snapshot available for {symbol} from centralized data provider")
|
||||
|
||||
# Create a snapshot object from the data provider's data
|
||||
@ -2353,7 +2355,12 @@ class CleanTradingDashboard:
|
||||
|
||||
return COBSnapshot(cob_data)
|
||||
else:
|
||||
logger.warning(f"Invalid COB data for {symbol}: type={type(cob_data)}, has_stats={'stats' in cob_data if isinstance(cob_data, dict) else False}")
|
||||
# Data exists but no stats - this is the "Invalid COB data" case
|
||||
logger.debug(f"COB data for {symbol} missing stats structure: {type(cob_data)}, keys: {list(cob_data.keys()) if isinstance(cob_data, dict) else 'not dict'}")
|
||||
return None
|
||||
else:
|
||||
logger.debug(f"No COB data available for {symbol} from data provider")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting COB data from data provider: {e}")
|
||||
|
||||
@ -5358,6 +5365,18 @@ class CleanTradingDashboard:
|
||||
|
||||
self.latest_cob_data[symbol] = cob_snapshot
|
||||
|
||||
# Store in history for moving average calculations
|
||||
if not hasattr(self, 'cob_data_history'):
|
||||
self.cob_data_history = {'ETH/USDT': deque(maxlen=61), 'BTC/USDT': deque(maxlen=61)}
|
||||
|
||||
if symbol in self.cob_data_history:
|
||||
self.cob_data_history[symbol].append(cob_snapshot)
|
||||
|
||||
# Update last update timestamp
|
||||
if not hasattr(self, 'cob_last_update'):
|
||||
self.cob_last_update = {}
|
||||
self.cob_last_update[symbol] = time.time()
|
||||
|
||||
# Update current price from COB data
|
||||
if 'stats' in cob_snapshot and 'mid_price' in cob_snapshot['stats']:
|
||||
self.current_prices[symbol] = cob_snapshot['stats']['mid_price']
|
||||
@ -6021,33 +6040,71 @@ class CleanTradingDashboard:
|
||||
raise
|
||||
|
||||
def _calculate_cumulative_imbalance(self, symbol: str) -> Dict[str, float]:
|
||||
"""Calculate average imbalance over multiple time windows."""
|
||||
"""Calculate Moving Averages (MA) of imbalance over different periods."""
|
||||
stats = {}
|
||||
now = time.time()
|
||||
history = self.cob_data_history.get(symbol)
|
||||
|
||||
if not history:
|
||||
return {'1s': 0.0, '5s': 0.0, '15s': 0.0, '60s': 0.0}
|
||||
|
||||
periods = {'1s': 1, '5s': 5, '15s': 15, '60s': 60}
|
||||
# Convert history to list and get recent snapshots
|
||||
history_list = list(history)
|
||||
if not history_list:
|
||||
return {'1s': 0.0, '5s': 0.0, '15s': 0.0, '60s': 0.0}
|
||||
|
||||
for name, duration in periods.items():
|
||||
recent_imbalances = []
|
||||
for snap in history:
|
||||
# Check if snap is a valid dict with timestamp and stats
|
||||
if isinstance(snap, dict) and 'timestamp' in snap and (now - snap['timestamp'] <= duration) and 'stats' in snap and snap['stats']:
|
||||
# Extract imbalance values from recent snapshots
|
||||
imbalances = []
|
||||
for snap in history_list:
|
||||
if isinstance(snap, dict) and 'stats' in snap and snap['stats']:
|
||||
imbalance = snap['stats'].get('imbalance')
|
||||
if imbalance is not None:
|
||||
recent_imbalances.append(imbalance)
|
||||
imbalances.append(imbalance)
|
||||
|
||||
if recent_imbalances:
|
||||
stats[name] = sum(recent_imbalances) / len(recent_imbalances)
|
||||
if not imbalances:
|
||||
return {'1s': 0.0, '5s': 0.0, '15s': 0.0, '60s': 0.0}
|
||||
|
||||
# Calculate Moving Averages over different periods
|
||||
# MA periods: 1s=1 period, 5s=5 periods, 15s=15 periods, 60s=60 periods
|
||||
ma_periods = {'1s': 1, '5s': 5, '15s': 15, '60s': 60}
|
||||
|
||||
for name, period in ma_periods.items():
|
||||
if len(imbalances) >= period:
|
||||
# Calculate SMA over the last 'period' values
|
||||
recent_imbalances = imbalances[-period:]
|
||||
sma_value = sum(recent_imbalances) / len(recent_imbalances)
|
||||
|
||||
# Also calculate EMA for better responsiveness
|
||||
if period > 1:
|
||||
# EMA calculation with alpha = 2/(period+1)
|
||||
alpha = 2.0 / (period + 1)
|
||||
ema_value = recent_imbalances[0] # Start with first value
|
||||
for value in recent_imbalances[1:]:
|
||||
ema_value = alpha * value + (1 - alpha) * ema_value
|
||||
# Use EMA for better responsiveness
|
||||
stats[name] = ema_value
|
||||
else:
|
||||
# For 1s, use SMA (no EMA needed)
|
||||
stats[name] = sma_value
|
||||
else:
|
||||
# If not enough data, use available data
|
||||
available_imbalances = imbalances[-min(period, len(imbalances)):]
|
||||
if available_imbalances:
|
||||
if len(available_imbalances) > 1:
|
||||
# Calculate EMA for available data
|
||||
alpha = 2.0 / (len(available_imbalances) + 1)
|
||||
ema_value = available_imbalances[0]
|
||||
for value in available_imbalances[1:]:
|
||||
ema_value = alpha * value + (1 - alpha) * ema_value
|
||||
stats[name] = ema_value
|
||||
else:
|
||||
# Single value, use as is
|
||||
stats[name] = available_imbalances[0]
|
||||
else:
|
||||
stats[name] = 0.0
|
||||
|
||||
# Debug logging to verify cumulative imbalance calculation
|
||||
# Debug logging to verify MA calculation
|
||||
if any(value != 0.0 for value in stats.values()):
|
||||
logger.debug(f"[CUMULATIVE-IMBALANCE] {symbol}: {stats}")
|
||||
logger.debug(f"[MOVING-AVERAGE-IMBALANCE] {symbol}: {stats} (from {len(imbalances)} snapshots)")
|
||||
|
||||
return stats
|
||||
|
||||
|
@ -412,10 +412,10 @@ class DashboardComponentManager:
|
||||
]),
|
||||
|
||||
html.Div([
|
||||
self._create_timeframe_imbalance("1s", stats.get('imbalance_1s', imbalance)),
|
||||
self._create_timeframe_imbalance("5s", stats.get('imbalance_5s', imbalance)),
|
||||
self._create_timeframe_imbalance("15s", stats.get('imbalance_15s', imbalance)),
|
||||
self._create_timeframe_imbalance("60s", stats.get('imbalance_60s', imbalance)),
|
||||
self._create_timeframe_imbalance("1s", cumulative_imbalance_stats.get('1s', imbalance)),
|
||||
self._create_timeframe_imbalance("5s", cumulative_imbalance_stats.get('5s', imbalance)),
|
||||
self._create_timeframe_imbalance("15s", cumulative_imbalance_stats.get('15s', imbalance)),
|
||||
self._create_timeframe_imbalance("60s", cumulative_imbalance_stats.get('60s', imbalance)),
|
||||
], className="d-flex justify-content-between mb-2"),
|
||||
|
||||
html.Div(imbalance_stats_display),
|
||||
|
@ -986,33 +986,71 @@ class TemplatedTradingDashboard:
|
||||
logger.debug(f"TEMPLATED DASHBOARD: Error generating bucketed COB data: {e}")
|
||||
|
||||
def _calculate_cumulative_imbalance(self, symbol: str) -> Dict[str, float]:
|
||||
"""Calculate average imbalance over multiple time windows."""
|
||||
"""Calculate Moving Averages (MA) of imbalance over different periods."""
|
||||
stats = {}
|
||||
now = time.time()
|
||||
history = self.cob_data_history.get(symbol)
|
||||
|
||||
if not history:
|
||||
return {'1s': 0.0, '5s': 0.0, '15s': 0.0, '60s': 0.0}
|
||||
|
||||
periods = {'1s': 1, '5s': 5, '15s': 15, '60s': 60}
|
||||
# Convert history to list and get recent snapshots
|
||||
history_list = list(history)
|
||||
if not history_list:
|
||||
return {'1s': 0.0, '5s': 0.0, '15s': 0.0, '60s': 0.0}
|
||||
|
||||
for name, duration in periods.items():
|
||||
recent_imbalances = []
|
||||
for snap in history:
|
||||
# Check if snap is a valid dict with timestamp and stats
|
||||
if isinstance(snap, dict) and 'timestamp' in snap and (now - snap['timestamp'] <= duration) and 'stats' in snap and snap['stats']:
|
||||
# Extract imbalance values from recent snapshots
|
||||
imbalances = []
|
||||
for snap in history_list:
|
||||
if isinstance(snap, dict) and 'stats' in snap and snap['stats']:
|
||||
imbalance = snap['stats'].get('imbalance')
|
||||
if imbalance is not None:
|
||||
recent_imbalances.append(imbalance)
|
||||
imbalances.append(imbalance)
|
||||
|
||||
if recent_imbalances:
|
||||
stats[name] = sum(recent_imbalances) / len(recent_imbalances)
|
||||
if not imbalances:
|
||||
return {'1s': 0.0, '5s': 0.0, '15s': 0.0, '60s': 0.0}
|
||||
|
||||
# Calculate Moving Averages over different periods
|
||||
# MA periods: 1s=1 period, 5s=5 periods, 15s=15 periods, 60s=60 periods
|
||||
ma_periods = {'1s': 1, '5s': 5, '15s': 15, '60s': 60}
|
||||
|
||||
for name, period in ma_periods.items():
|
||||
if len(imbalances) >= period:
|
||||
# Calculate SMA over the last 'period' values
|
||||
recent_imbalances = imbalances[-period:]
|
||||
sma_value = sum(recent_imbalances) / len(recent_imbalances)
|
||||
|
||||
# Also calculate EMA for better responsiveness
|
||||
if period > 1:
|
||||
# EMA calculation with alpha = 2/(period+1)
|
||||
alpha = 2.0 / (period + 1)
|
||||
ema_value = recent_imbalances[0] # Start with first value
|
||||
for value in recent_imbalances[1:]:
|
||||
ema_value = alpha * value + (1 - alpha) * ema_value
|
||||
# Use EMA for better responsiveness
|
||||
stats[name] = ema_value
|
||||
else:
|
||||
# For 1s, use SMA (no EMA needed)
|
||||
stats[name] = sma_value
|
||||
else:
|
||||
# If not enough data, use available data
|
||||
available_imbalances = imbalances[-min(period, len(imbalances)):]
|
||||
if available_imbalances:
|
||||
if len(available_imbalances) > 1:
|
||||
# Calculate EMA for available data
|
||||
alpha = 2.0 / (len(available_imbalances) + 1)
|
||||
ema_value = available_imbalances[0]
|
||||
for value in available_imbalances[1:]:
|
||||
ema_value = alpha * value + (1 - alpha) * ema_value
|
||||
stats[name] = ema_value
|
||||
else:
|
||||
# Single value, use as is
|
||||
stats[name] = available_imbalances[0]
|
||||
else:
|
||||
stats[name] = 0.0
|
||||
|
||||
# Debug logging to verify cumulative imbalance calculation
|
||||
# Debug logging to verify MA calculation
|
||||
if any(value != 0.0 for value in stats.values()):
|
||||
logger.debug(f"TEMPLATED DASHBOARD: [CUMULATIVE-IMBALANCE] {symbol}: {stats}")
|
||||
logger.debug(f"TEMPLATED DASHBOARD: [MOVING-AVERAGE-IMBALANCE] {symbol}: {stats} (from {len(imbalances)} snapshots)")
|
||||
|
||||
return stats
|
||||
|
||||
|
Reference in New Issue
Block a user