text exporter

This commit is contained in:
Dobromir Popov
2025-08-26 18:16:12 +03:00
parent c39b70f6fa
commit 9a76624904
9 changed files with 658 additions and 106 deletions

View File

@@ -446,8 +446,8 @@ class EnhancedCOBWebSocket:
# Add ping/pong handling and proper connection management
async with websockets_connect(
ws_url,
ping_interval=20, # Binance sends ping every 20 seconds
ping_timeout=60, # Binance disconnects after 1 minute without pong
ping_interval=25, # Slightly longer than default
ping_timeout=90, # Allow longer time before timeout
close_timeout=10
) as websocket:
# Connection successful
@@ -539,8 +539,11 @@ class EnhancedCOBWebSocket:
# Wait before reconnecting
status.increase_reconnect_delay()
logger.info(f"Waiting {status.reconnect_delay:.1f}s before reconnecting {symbol}")
await asyncio.sleep(status.reconnect_delay)
# Add jitter to avoid synchronized reconnects
jitter = 0.5 + (random.random() * 1.5)
delay = status.reconnect_delay * jitter
logger.info(f"Waiting {delay:.1f}s before reconnecting {symbol}")
await asyncio.sleep(delay)
async def _process_websocket_message(self, symbol: str, data: Dict):
"""Process WebSocket message and convert to COB format

View File

@@ -28,6 +28,9 @@ import shutil
import torch
import torch.nn as nn
import torch.optim as optim
# Text export integration
from .text_export_integration import TextExportManager
import pandas as pd
from pathlib import Path
@@ -568,6 +571,7 @@ class TradingOrchestrator:
self._initialize_decision_fusion() # Initialize fusion system
self._initialize_transformer_model() # Initialize transformer model
self._initialize_enhanced_training_system() # Initialize real-time training
self._initialize_text_export_manager() # Initialize text data export
def _normalize_model_name(self, name: str) -> str:
"""Map various registry/UI names to canonical toggle keys."""
@@ -7023,6 +7027,66 @@ class TradingOrchestrator:
logger.error(f"Error stopping enhanced training: {e}")
return False
def _initialize_text_export_manager(self):
"""Initialize the text data export manager"""
try:
self.text_export_manager = TextExportManager(
data_provider=self.data_provider,
orchestrator=self
)
# Configure with current symbols
export_config = {
'main_symbol': self.symbol,
'ref1_symbol': self.ref_symbols[0] if self.ref_symbols else 'BTC/USDT',
'ref2_symbol': 'SPX', # Default to SPX for now
'export_dir': 'data/text_exports'
}
self.text_export_manager.export_config.update(export_config)
logger.info("Text export manager initialized")
logger.info(f" - Main symbol: {export_config['main_symbol']}")
logger.info(f" - Reference symbols: {export_config['ref1_symbol']}, {export_config['ref2_symbol']}")
logger.info(f" - Export directory: {export_config['export_dir']}")
except Exception as e:
logger.error(f"Error initializing text export manager: {e}")
self.text_export_manager = None
def start_text_export(self) -> bool:
"""Start text data export"""
try:
if not hasattr(self, 'text_export_manager') or not self.text_export_manager:
logger.warning("Text export manager not initialized")
return False
return self.text_export_manager.start_export()
except Exception as e:
logger.error(f"Error starting text export: {e}")
return False
def stop_text_export(self) -> bool:
"""Stop text data export"""
try:
if not hasattr(self, 'text_export_manager') or not self.text_export_manager:
return True
return self.text_export_manager.stop_export()
except Exception as e:
logger.error(f"Error stopping text export: {e}")
return False
def get_text_export_status(self) -> Dict[str, Any]:
"""Get text export status"""
try:
if not hasattr(self, 'text_export_manager') or not self.text_export_manager:
return {'enabled': False, 'initialized': False, 'error': 'Not initialized'}
return self.text_export_manager.get_export_status()
except Exception as e:
logger.error(f"Error getting text export status: {e}")
return {'enabled': False, 'initialized': False, 'error': str(e)}
def get_enhanced_training_stats(self) -> Dict[str, Any]:
"""Get enhanced training system statistics with orchestrator integration"""
try:

321
core/text_data_exporter.py Normal file
View File

@@ -0,0 +1,321 @@
#!/usr/bin/env python3
"""
Text Data Exporter - CSV Interface for External Systems
Exports market data in CSV format for integration with text-based systems
"""
import os
import csv
import threading
import time
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
import logging
logger = logging.getLogger(__name__)
@dataclass
class MarketDataPoint:
"""Single market data point"""
symbol: str
timeframe: str
open: float
high: float
low: float
close: float
volume: float
timestamp: datetime
class TextDataExporter:
"""
Exports market data to CSV files for external text-based systems
Features:
- Multi-symbol support (MAIN + REF1 + REF2)
- Multi-timeframe (1s, 1m, 1h, 1d)
- File rotation every minute
- Overwrites within the same minute
- Thread-safe operations
"""
def __init__(self,
data_provider=None,
export_dir: str = "data/text_exports",
main_symbol: str = "ETH/USDT",
ref1_symbol: str = "BTC/USDT",
ref2_symbol: str = "SPX"):
"""
Initialize text data exporter
Args:
data_provider: Data provider instance
export_dir: Directory for CSV exports
main_symbol: Main trading symbol (ETH)
ref1_symbol: Reference symbol 1 (BTC)
ref2_symbol: Reference symbol 2 (SPX)
"""
self.data_provider = data_provider
self.export_dir = export_dir
self.main_symbol = main_symbol
self.ref1_symbol = ref1_symbol
self.ref2_symbol = ref2_symbol
# Timeframes to export
self.timeframes = ['1s', '1m', '1h', '1d']
# File management
self.current_minute = None
self.current_filename = None
self.export_lock = threading.Lock()
# Running state
self.is_running = False
self.export_thread = None
# Create export directory
os.makedirs(self.export_dir, exist_ok=True)
logger.info(f"Text Data Exporter initialized - Export dir: {self.export_dir}")
logger.info(f"Symbols: MAIN={main_symbol}, REF1={ref1_symbol}, REF2={ref2_symbol}")
def start(self):
"""Start the data export process"""
if self.is_running:
logger.warning("Text data exporter already running")
return
self.is_running = True
self.export_thread = threading.Thread(target=self._export_loop, daemon=True)
self.export_thread.start()
logger.info("Text data exporter started")
def stop(self):
"""Stop the data export process"""
self.is_running = False
if self.export_thread:
self.export_thread.join(timeout=5)
logger.info("Text data exporter stopped")
def _export_loop(self):
"""Main export loop - runs every second"""
while self.is_running:
try:
self._export_current_data()
time.sleep(1) # Export every second
except Exception as e:
logger.error(f"Error in export loop: {e}")
time.sleep(1)
def _export_current_data(self):
"""Export current market data to CSV"""
try:
current_time = datetime.now()
current_minute_key = current_time.strftime("%Y%m%d_%H%M")
# Check if we need a new file (new minute)
if self.current_minute != current_minute_key:
self.current_minute = current_minute_key
self.current_filename = f"market_data_{current_minute_key}.csv"
logger.info(f"Starting new export file: {self.current_filename}")
# Gather data for all symbols and timeframes
export_data = self._gather_export_data()
if export_data:
self._write_csv_file(export_data)
else:
logger.debug("No data available for export")
except Exception as e:
logger.error(f"Error exporting data: {e}")
def _gather_export_data(self) -> List[Dict[str, Any]]:
"""Gather market data for all symbols and timeframes"""
export_rows = []
if not self.data_provider:
return export_rows
symbols = [
("MAIN", self.main_symbol),
("REF1", self.ref1_symbol),
("REF2", self.ref2_symbol)
]
for symbol_type, symbol in symbols:
for timeframe in self.timeframes:
try:
# Get latest data for this symbol/timeframe
data_point = self._get_latest_data(symbol, timeframe)
if data_point:
export_rows.append({
'symbol_type': symbol_type,
'symbol': symbol,
'timeframe': timeframe,
'open': data_point.open,
'high': data_point.high,
'low': data_point.low,
'close': data_point.close,
'volume': data_point.volume,
'timestamp': data_point.timestamp
})
except Exception as e:
logger.debug(f"Error getting data for {symbol} {timeframe}: {e}")
return export_rows
def _get_latest_data(self, symbol: str, timeframe: str) -> Optional[MarketDataPoint]:
"""Get latest market data for symbol/timeframe"""
try:
if not hasattr(self.data_provider, 'get_latest_candle'):
return None
# Try to get latest candle data
candle = self.data_provider.get_latest_candle(symbol, timeframe)
if not candle:
return None
# Convert to MarketDataPoint
return MarketDataPoint(
symbol=symbol,
timeframe=timeframe,
open=float(candle.get('open', 0)),
high=float(candle.get('high', 0)),
low=float(candle.get('low', 0)),
close=float(candle.get('close', 0)),
volume=float(candle.get('volume', 0)),
timestamp=candle.get('timestamp', datetime.now())
)
except Exception as e:
logger.debug(f"Error getting latest data for {symbol} {timeframe}: {e}")
return None
def _write_csv_file(self, export_data: List[Dict[str, Any]]):
"""Write data to CSV file"""
if not export_data:
return
filepath = os.path.join(self.export_dir, self.current_filename)
with self.export_lock:
try:
with open(filepath, 'w', newline='', encoding='utf-8') as csvfile:
# Create header based on the format specification
fieldnames = self._create_csv_header()
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
# Write header
writer.writeheader()
# Group data by symbol type for organized output
grouped_data = self._group_data_by_symbol(export_data)
# Write data rows
for row in self._format_csv_rows(grouped_data):
writer.writerow(row)
logger.debug(f"Exported {len(export_data)} data points to {filepath}")
except Exception as e:
logger.error(f"Error writing CSV file {filepath}: {e}")
def _create_csv_header(self) -> List[str]:
"""Create CSV header based on specification"""
header = ['symbol']
# Add columns for each symbol type and timeframe
for symbol_type in ['MAIN', 'REF1', 'REF2']:
for timeframe in self.timeframes:
prefix = f"{symbol_type}_{timeframe}"
header.extend([
f"{prefix}_O", # Open
f"{prefix}_H", # High
f"{prefix}_L", # Low
f"{prefix}_C", # Close
f"{prefix}_V", # Volume
f"{prefix}_T" # Timestamp
])
return header
def _group_data_by_symbol(self, export_data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Dict[str, Any]]]:
"""Group data by symbol type and timeframe"""
grouped = {}
for data_point in export_data:
symbol_type = data_point['symbol_type']
timeframe = data_point['timeframe']
if symbol_type not in grouped:
grouped[symbol_type] = {}
grouped[symbol_type][timeframe] = data_point
return grouped
def _format_csv_rows(self, grouped_data: Dict[str, Dict[str, Dict[str, Any]]]) -> List[Dict[str, Any]]:
"""Format data into CSV rows"""
rows = []
# Create a single row with all data
row = {'symbol': f"{self.main_symbol.split('/')[0]} ({self.ref1_symbol.split('/')[0]}, {self.ref2_symbol})"}
for symbol_type in ['MAIN', 'REF1', 'REF2']:
symbol_data = grouped_data.get(symbol_type, {})
for timeframe in self.timeframes:
prefix = f"{symbol_type}_{timeframe}"
data_point = symbol_data.get(timeframe)
if data_point:
row[f"{prefix}_O"] = f"{data_point['open']:.6f}"
row[f"{prefix}_H"] = f"{data_point['high']:.6f}"
row[f"{prefix}_L"] = f"{data_point['low']:.6f}"
row[f"{prefix}_C"] = f"{data_point['close']:.6f}"
row[f"{prefix}_V"] = f"{data_point['volume']:.2f}"
row[f"{prefix}_T"] = data_point['timestamp'].strftime("%Y-%m-%d %H:%M:%S")
else:
# Empty values if no data
row[f"{prefix}_O"] = ""
row[f"{prefix}_H"] = ""
row[f"{prefix}_L"] = ""
row[f"{prefix}_C"] = ""
row[f"{prefix}_V"] = ""
row[f"{prefix}_T"] = ""
rows.append(row)
return rows
def get_current_filename(self) -> Optional[str]:
"""Get current export filename"""
return self.current_filename
def get_export_stats(self) -> Dict[str, Any]:
"""Get export statistics"""
stats = {
'is_running': self.is_running,
'export_dir': self.export_dir,
'current_filename': self.current_filename,
'symbols': {
'main': self.main_symbol,
'ref1': self.ref1_symbol,
'ref2': self.ref2_symbol
},
'timeframes': self.timeframes
}
# Add file count
try:
files = [f for f in os.listdir(self.export_dir) if f.endswith('.csv')]
stats['total_files'] = len(files)
except:
stats['total_files'] = 0
return stats
# Convenience function for integration
def create_text_exporter(data_provider=None, **kwargs) -> TextDataExporter:
"""Create and return a TextDataExporter instance"""
return TextDataExporter(data_provider=data_provider, **kwargs)

View File

@@ -0,0 +1,233 @@
#!/usr/bin/env python3
"""
Text Export Integration - Connects TextDataExporter with existing data systems
"""
import logging
from typing import Optional, Dict, Any
from datetime import datetime
from .text_data_exporter import TextDataExporter
logger = logging.getLogger(__name__)
class TextExportManager:
"""
Manages text data export integration with the trading system
"""
def __init__(self, data_provider=None, orchestrator=None):
"""
Initialize text export manager
Args:
data_provider: Main data provider instance
orchestrator: Trading orchestrator instance
"""
self.data_provider = data_provider
self.orchestrator = orchestrator
self.text_exporter: Optional[TextDataExporter] = None
# Configuration
self.export_enabled = False
self.export_config = {
'main_symbol': 'ETH/USDT',
'ref1_symbol': 'BTC/USDT',
'ref2_symbol': 'SPX', # Will need to be mapped to available data
'export_dir': 'data/text_exports'
}
def initialize_exporter(self, config: Optional[Dict[str, Any]] = None):
"""Initialize the text data exporter"""
try:
if config:
self.export_config.update(config)
# Create enhanced data provider wrapper
enhanced_provider = EnhancedDataProviderWrapper(
self.data_provider,
self.orchestrator
)
# Create text exporter
self.text_exporter = TextDataExporter(
data_provider=enhanced_provider,
export_dir=self.export_config['export_dir'],
main_symbol=self.export_config['main_symbol'],
ref1_symbol=self.export_config['ref1_symbol'],
ref2_symbol=self.export_config['ref2_symbol']
)
logger.info("Text data exporter initialized successfully")
return True
except Exception as e:
logger.error(f"Error initializing text exporter: {e}")
return False
def start_export(self):
"""Start text data export"""
if not self.text_exporter:
if not self.initialize_exporter():
logger.error("Cannot start export - initialization failed")
return False
try:
self.text_exporter.start()
self.export_enabled = True
logger.info("Text data export started")
return True
except Exception as e:
logger.error(f"Error starting text export: {e}")
return False
def stop_export(self):
"""Stop text data export"""
if self.text_exporter:
try:
self.text_exporter.stop()
self.export_enabled = False
logger.info("Text data export stopped")
return True
except Exception as e:
logger.error(f"Error stopping text export: {e}")
return False
return True
def get_export_status(self) -> Dict[str, Any]:
"""Get current export status"""
status = {
'enabled': self.export_enabled,
'initialized': self.text_exporter is not None,
'config': self.export_config.copy()
}
if self.text_exporter:
status.update(self.text_exporter.get_export_stats())
return status
def update_config(self, new_config: Dict[str, Any]):
"""Update export configuration"""
old_enabled = self.export_enabled
# Stop if running
if old_enabled:
self.stop_export()
# Update config
self.export_config.update(new_config)
# Reinitialize
self.text_exporter = None
# Restart if was enabled
if old_enabled:
self.start_export()
logger.info(f"Text export config updated: {new_config}")
class EnhancedDataProviderWrapper:
"""
Wrapper around the existing data provider to provide the interface
expected by TextDataExporter
"""
def __init__(self, data_provider, orchestrator=None):
self.data_provider = data_provider
self.orchestrator = orchestrator
# Timeframe mapping
self.timeframe_map = {
'1s': '1s',
'1m': '1m',
'1h': '1h',
'1d': '1d'
}
def get_latest_candle(self, symbol: str, timeframe: str) -> Optional[Dict[str, Any]]:
"""Get latest candle data for symbol/timeframe"""
try:
# Handle special symbols
if symbol == 'SPX':
return self._get_spx_data()
# Map timeframe
mapped_timeframe = self.timeframe_map.get(timeframe, timeframe)
# Try different methods to get data
candle_data = None
# Method 1: Direct candle data
if hasattr(self.data_provider, 'get_latest_candle'):
candle_data = self.data_provider.get_latest_candle(symbol, mapped_timeframe)
# Method 2: From candle buffer
elif hasattr(self.data_provider, 'candle_buffer'):
buffer_key = f"{symbol}_{mapped_timeframe}"
if buffer_key in self.data_provider.candle_buffer:
candles = self.data_provider.candle_buffer[buffer_key]
if candles:
latest = candles[-1]
candle_data = {
'open': latest.get('open', 0),
'high': latest.get('high', 0),
'low': latest.get('low', 0),
'close': latest.get('close', 0),
'volume': latest.get('volume', 0),
'timestamp': latest.get('timestamp', datetime.now())
}
# Method 3: From tick data (for 1s timeframe)
elif mapped_timeframe == '1s' and hasattr(self.data_provider, 'latest_prices'):
if symbol in self.data_provider.latest_prices:
price = self.data_provider.latest_prices[symbol]
candle_data = {
'open': price,
'high': price,
'low': price,
'close': price,
'volume': 0,
'timestamp': datetime.now()
}
return candle_data
except Exception as e:
logger.debug(f"Error getting candle data for {symbol} {timeframe}: {e}")
return None
def _get_spx_data(self) -> Optional[Dict[str, Any]]:
"""Get SPX data - placeholder for now"""
# For now, return mock SPX data
# In production, this would connect to a stock data provider
return {
'open': 5500.0,
'high': 5520.0,
'low': 5495.0,
'close': 5510.0,
'volume': 1000000,
'timestamp': datetime.now()
}
# Integration helper functions
def setup_text_export(data_provider=None, orchestrator=None, config: Optional[Dict[str, Any]] = None) -> TextExportManager:
"""Setup text export with default configuration"""
manager = TextExportManager(data_provider, orchestrator)
if config:
manager.export_config.update(config)
return manager
def start_text_export_service(data_provider=None, orchestrator=None, auto_start: bool = True) -> TextExportManager:
"""Start text export service with auto-initialization"""
manager = setup_text_export(data_provider, orchestrator)
if auto_start:
if manager.initialize_exporter():
manager.start_export()
logger.info("Text export service started successfully")
else:
logger.error("Failed to start text export service")
return manager